The ligand effects of atomically precise metal nanoclusters on electrocatalysis kinetics have been rarely revealed. Herein, we employ atomically precise Au nanoclusters with different ligands (i.e., para-mercaptobenzoic acid, 6-mercaptohexanoic acid, and homocysteine) as paradigm electrocatalysts to demonstrate oxygen evolution reaction rate-determining step switching through ligand engineering. Au nanoclusters capped by para-mercaptobenzoic acid exhibit a better performance with nearly 4 times higher than that of Au NCs capped by other two ligands. We deduce that para-mercaptobenzoic acid with a stronger electron-withdrawing ability establishes more partial positive charges on Au(I) (i.e., active sites) for facilitating feasible adsorption of OH in alkaline media. X-ray photo-electron spectroscopy and theoretical study indicate a profound electron transfer from Au(I) to para-mercaptobenzoic acid. The Tafel slope and in situ Raman spectroscopy suggest different ligands trigger different rate-determining step for these Au nanoclusters. The mechanistic insights reported here can add to the acceptance of atomically precise metal nanoclusters as effective electrocatalysts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250400PMC
http://dx.doi.org/10.1038/s41467-023-38914-7DOI Listing

Publication Analysis

Top Keywords

atomically precise
16
para-mercaptobenzoic acid
16
rate-determining step
12
precise metal
12
metal nanoclusters
12
nanoclusters
6
acid
5
ligand switching
4
switching rate-determining
4
step water
4

Similar Publications

This study investigates the surface energies and work function changes in ZnGaO(111) surfaces with different atomic terminations using ab initio density functional theory. It explores the interactions of gas molecules such as NO, NO, and CHCOCH with Ga-terminated, O-terminated, and Ga-Zn-O-terminated surfaces. This study reveals previously unreported insights into how O-terminated surfaces exhibit enhanced reactivity with NO, resulting in significant work function changes of +6.

View Article and Find Full Text PDF

SARS-CoV-2 viral entry requires membrane fusion, which is facilitated by the fusion peptides within its spike protein. These predominantly hydrophobic peptides insert into target membranes; however, their precise mechanistic role in membrane fusion remains incompletely understood. Here, we investigate how FP1 (SFIEDLLFNKVTLADAGFIK), the N-terminal fusion peptide, modulates membrane stability and barrier function across various model membrane systems.

View Article and Find Full Text PDF

Atomic magnetometers are highly sensitive instruments widely used for measurements of weak magnetic field. Extracting vector information while maintaining high-precision scalar detection has become the trend in atomic magnetometer development. We introduce a vector atomic magnetometer containing a 5 mm-thick microfabricated vapor cell operating in free-induction-decay mode.

View Article and Find Full Text PDF

Carbon-carbon triple bond cleavage and reconstitution to achieve aryl amidation using nitrous acid esters.

Nat Commun

January 2025

School of Materials Science and Chemical Engineering, Institute of Drug Discovery Technology, Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Ningbo University, Ningbo, PR China.

C-C bond cleavage and recombination provide an efficient strategy for the modification and reconstruction of molecule structures. Herein, we present a method for achieving amidation of aryl C(sp)-H bond through the cleavage and recombination of C-C triple bond with the involvement of nitrous acid esters. This method marks the instance of precise and controlled stepwise cleavage of C-C triple bond, offering a fresh perspective for the cleavage of such bonds.

View Article and Find Full Text PDF

Suppressing Jahn-Teller distortion of MnO via B-Ni dual single-atoms integration for methane catalytic combustion.

Nat Commun

January 2025

School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, 300072, China.

Precisely managing electron transfer pathways throughout the catalytic reaction is paramount for bolstering both the efficacy and endurance of catalysts, offering a pivotal solution to addressing concerns surrounding host structure destabilization and cycling life degradation. This paper describes the integration of B-Ni dual single-atoms within MnO channels to serve as an electronic reservoir to direct the electron transfer route during methane catalytic combustion. Comprehensive analysis discovers that B atoms weaken the interaction between O and Mn atoms by forming bonds with lattice oxygen atoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!