The mechanisms controlling the generation of PbH by reaction of inorganic Pb(II) with aqueous NaBH were investigated both in the presence and in the absence of the additive KFe(CN). For the first time PbH has been identified in analytical chemical vapor generation (CVG) by using gas chromatographic mass spectrometry (GC-MS), which allows the use of deuterium labelled experiments. In the absence of the additive, under reaction conditions typically employed for trace lead determination by CVG, Pb(II) is converted to solid species and no volatile lead species can be detected by either atomic or mass spectrometry for Pb(II) concentration up to 100 mg L. In alkaline conditions Pb(II) substrates are unreactive towards NaBH. In the presence of KFe(CN), deuterium labelled experiments clearly indicated that the generated PbH is formed by the direct transfer of hydride from borane to lead atoms. Kinetic experiments were carried out to evaluate the rate of reduction of KFe(CN) by NaBH, the rate of hydrolysis of NaBH both in the presence and in the absence of KFe(CN), and the rate of dihydrogen evolution following NaBH hydrolysis. The effect of delayed addition of Pb(II) to NaBH-HCl- KFe(CN), and KFe(CN) to NaBH-HCl-Pb(II) reaction mixtures on the efficiency of plumbane generation was investigated by continuous flow CVG coupled with atomic fluorescence spectrometry. The collected evidences, complemented with thermodynamic considerations and literature data, have made it possible to clarify long-standing controversial aspects related to the mechanism of plumbane generation and the role of KFe(CN) additive.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2023.341427DOI Listing

Publication Analysis

Top Keywords

chemical vapor
8
vapor generation
8
presence absence
8
absence additive
8
mass spectrometry
8
deuterium labelled
8
labelled experiments
8
nabh presence
8
plumbane generation
8
kfecn
7

Similar Publications

Manipulation of Surface Spin Configurations for Enhanced Performance in Oxygen Evolution Reactions.

Nano Lett

January 2025

Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, College of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.

studies of the relationship between surface spin configurations and spin-related electrocatalytic reactions are crucial for understanding how magnetic catalysts enhance oxygen evolution reaction (OER) performance under magnetic fields. In this work, 2D FeSe nanosheets with rich surface spin configurations are synthesized via chemical vapor deposition. magnetic force microscopy and Raman spectroscopy reveal that a 200 mT magnetic field eliminates spin-disordered domain walls, forming a spin-ordered single-domain structure, which lowers the OER energy barrier, as confirmed by theoretical calculations.

View Article and Find Full Text PDF

Dye-sensitized upconversion nanoprobes with ultra-high signal-to-background ratio for visual and sensitive detection of nerve agent mimics.

Mikrochim Acta

January 2025

Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.

An exciting upconversion nanoprobe conditioning strategy is proposed to improve the signal-to-background ratio (SBR) through a dye-sensitized strategy, in which the dye functions both as a recognition unit of the detection target and as a sensitizer to amplify the visible luminescence of the lanthanide-doped upconversion nanoparticles (UCNPs), instead of a quencher. The application of this dye-sensitized upconversion nanoprobe to the visual detection of nerve agent mimics diethoxy phosphatidylcholine (DCP) showed excellent detection performance, with up to 110-fold enhancement of the luminescence response of the probe in DCP solution and a detection limit as low as 2 nM. Finally, we performed visual detection of DCP solution and vapor by using test strips containing the probe.

View Article and Find Full Text PDF

The elevated glutathione (GSH) level and hypoxia in tumor cells are two key obstacles to realizing the high performance of phototherapy. Herein, the electron-donating rotors are introduced to wings of electron-withdrawing pyrrolopyrrole cyanine (PPCy) to form donor-acceptor-donor structure -aggregates for amplified superoxide radical generation, GSH depletion, and photothermal action for hypoxic cancer phototherapy to tackle this challenge. Three PPCy photosensitizers (PPCy-H, PPCy-Br, and PPCy-TPE) produce hydroxyl radicals (•OH) and superoxide radicals (O) in hypoxia tumors exclusively as well as excellent photothermal performances under light irradiation.

View Article and Find Full Text PDF

Permeance-selectivity trade-offs are inherent to polymeric membranes. In fuel cells, thinner proton exchange membranes (PEMs) could enable higher proton conductance and increased power density with lower area-specific resistance (ASR), smaller ohmic losses, and lower ionomer cost. However, reducing thickness is accompanied by an increase in undesired species crossover harming performance and long-term efficiency.

View Article and Find Full Text PDF

Semiconductor metal oxide gas sensors are widely used to detect ethanol vapours, commonly used in industrial productions, road safety detection, and solvent production; however, they operate at extremely high temperatures. In this work, we present manganese dioxide nanorods (MnO NRs) prepared via hydrothermal synthetic route, carbon soot (CNPs) prepared via pyrolysis of lighthouse candle, and poly-4-vinylpyridine (P4VP) composite for the detection of ethanol vapour at room temperature. MnO, CNPs, P4VP, and MnO NRs-CNPs-P4VP composite were characterised using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!