Myocardial ischemia-reperfusion injury (MIRI) is a serious complication affecting the prognosis of patients with myocardial infarction and can cause cardiac arrest, reperfusion arrhythmias, no-reflow, and irreversible myocardial cell death. Ferroptosis, an iron-dependent, peroxide-driven, non-apoptotic form of regulated cell death, plays a vital role in reperfusion injury. Acetylation, an important post-translational modification, participates in many cellular signaling pathways and diseases, and plays a pivotal role in ferroptosis. Elucidating the role of acetylation in ferroptosis may therefore provide new insights for the treatment of MIRI. Here, we summarized the recently discovered knowledge about acetylation and ferroptosis in MIRI. Finally, we focused on the acetylation modification during ferroptosis and its potential relationship with MIRI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.amjms.2023.04.034DOI Listing

Publication Analysis

Top Keywords

acetylation ferroptosis
12
ferroptosis potential
8
myocardial ischemia-reperfusion
8
ischemia-reperfusion injury
8
cell death
8
acetylation
5
ferroptosis
5
potential relationships
4
relationships implications
4
myocardial
4

Similar Publications

Introduction: Osteoarthritis (OA) is a chronic degenerative joint disorder characterized by an imbalance in chondrocyte metabolism. Ferroptosis has been implicated in the pathogenesis of OA. The role of Sirt1, a deacetylase, in mediating deacetylation during ferroptosis in OA chondrocytes remains underexplored.

View Article and Find Full Text PDF

S100P is a ferroptosis suppressor to facilitate hepatocellular carcinoma development by rewiring lipid metabolism.

Nat Commun

January 2025

Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.

Ferroptosis is a newly identified programmed cell death induced by iron-driven lipid peroxidation and implicated as a potential approach for tumor treatment. However, emerging evidence indicates that hepatocellular carcinoma (HCC) cells are generally resistant to ferroptosis and the underlying molecular mechanism is poorly understood. Here, our study confirms that S100 calcium binding protein P (S100P), which is significantly up-regulated in ferroptosis-resistant HCC cells, efficiently inhibits ferroptosis.

View Article and Find Full Text PDF

Exosomal circ_0006896 promotes AML progression via interaction with HDAC1 and restriction of antitumor immunity.

Mol Cancer

January 2025

Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China.

Background: Drug resistance and immune escape continue to contribute to poor prognosis in AML. Increasing evidence suggests that exosomes play a crucial role in AML immune microenvironment.

Methods: Sanger sequencing, RNase R and fluorescence in situ hybridization were performed to confirm the existence of circ_0006896.

View Article and Find Full Text PDF

Objective: Post-resuscitation brain injury is a common sequela after cardiac arrest (CA). Increasing sirtuin1 (SIRT1) has been involved in neuroprotection in oxygen-glucose deprivation (OGD) neurons, and we investigated its mechanism in post-cardiopulmonary resuscitation (CPR) rat brain injury by mediating p65 deacetylation modification to mediate hippocampal neuronal ferroptosis.

Methods: Sprague-Dawley rat CA/CPR model was established and treated with Ad-SIRT1 and Ad-GFP adenovirus vectors, or Erastin.

View Article and Find Full Text PDF

Purpose: Myocardial ischemia/reperfusion injury (MIRI) is closely associated with ferroptosis. Dexmedetomidine (Dex) has good therapeutic effects on MIRI. This study investigates whether dexmedetomidine (Dex) regulates ferroptosis during MIRI by affecting ferroportin1 (FPN) levels and elucidates the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!