Genome-wide analysis of the MdZR gene family revealed MdZR2.2-induced salt and drought stress tolerance in apple rootstock.

Plant Sci

College of Horticulture, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China. Electronic address:

Published: September 2023

The DNL-type zinc finger protein constitutes a zinc ribbon protein (ZR) family, which belongs to a branch of zinc finger protein and plays an essential role in response to abiotic stress. Here, we identified six apple (Malus domestica) MdZR genes. Based on their phylogenetic relationship and gene structure, the MdZR genes were divided into three categories, including MdZR1, MdZR2, and MdZR3. Subcellular results showed that the MdZRs are located on the nuclear and membrane. The transcriptome data showed that MdZR2.2 is expressed in various tissues. The expression analysis results showed that MdZR2.2 was significantly upregulated under salt and drought treatments. Thus, we selected MdZR2.2 for further research. Overexpression of MdZR2.2 in apple callus improved their tolerance to drought and salt stress and ability to scavenge reactive oxygen species (ROS). In contrast, transgenic apple roots with silenced MdZR2.2 grew more poorly than the wild type when subjected to salt and drought stress, which reduced their ability to scavenge ROS. To our knowledge, this is the first study to analyze the MdZR protein family. This study identified a gene that responds to drought and salt stress. Our findings lay a foundation for a comprehensive analysis of the MdZR family members.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2023.111755DOI Listing

Publication Analysis

Top Keywords

salt drought
12
analysis mdzr
8
drought stress
8
zinc finger
8
finger protein
8
protein family
8
mdzr genes
8
drought salt
8
salt stress
8
ability scavenge
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!