Cooperative oxygen binding in beta-semihemoglobins caused by a chemical modification in the alpha1beta1 interface.

J Inorg Biochem

Department of Frontier Bioscience, Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo 184-8584, Japan.

Published: September 2023

A beta-semihemoglobin is an alpha-beta dimer of hemoglobin (Hb) in which the beta-subunit carries heme, while the alpha-subunit is heme-less, in apo form. It is characterised by displaying a high affinity for oxygen, and absence of cooperative binding of oxygen. We have modified chemically the residue beta112Cys (G14), located adjacent to the alpha1beta1 interface, and studied the impact of such a modification on the oligomeric state and oxygenation properties of the derivatives. We also studied the impact of modifying beta93Cys (F9) since its modification was unavoidable. For this, we used N-Ethyl maleimide and iodoacetamide. For the alkylation of beta112Cys (G14) in isolated subunits, we used N-Ethyl maleimide, iodoacetamide, or additionally, 4,4'-Dithiopyridine. Seven native and chemically modified beta-subunit derivatives were prepared and analysed. Only those derivatives treated with iodoacetamide showed oxygenation properties that were indistinguishable from those of native beta-subunits. These derivatives were then converted into their respective semihemoglobin forms, and four additional derivatives were prepared and analysed .in terms of ligation-linked oligomeric state, and oxygenation function, and contrasted against native Hb and unmodified beta-subunits. Strikingly, beta-semiHbs with modifications in beta112Cys showed indications of cooperative oxygen binding in various degrees, which suggested the possibility of assembly of two beta-semiHbs. The derivative modified with 4-Thiopyridine in beta112Cys showed a highly cooperative binding of oxygen (n = 1.67). A plausible allosteric scheme that could explain allostery in beta-semiHb system is suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2023.112264DOI Listing

Publication Analysis

Top Keywords

cooperative oxygen
8
oxygen binding
8
alpha1beta1 interface
8
cooperative binding
8
binding oxygen
8
beta112cys g14
8
studied impact
8
oligomeric state
8
state oxygenation
8
oxygenation properties
8

Similar Publications

Microalgae, have emerged as a potentially promising feed additive option due to their beneficial nutritional profile rich in bioactive compounds. The present study examines the incorporation of Chlorella sorokiniana (at 0.1% and 1%) into chicken feed compared to control feed and its effect on growth and health parameters of poultry grown at pilot plant scale.

View Article and Find Full Text PDF

Plastid-localized ZmENR1/ZmHAD1 complex ensures maize pollen and anther development through regulating lipid and ROS metabolism.

Nat Commun

December 2024

Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine.

View Article and Find Full Text PDF

Gut Microbiota-Derived Hyocholic Acid Enhances Type 3 Immunity and Protects Against Salmonella enterica Serovar Typhimurium in Neonatal Rats.

Adv Sci (Weinh)

December 2024

Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.

This study investigates how microbiome colonization influences the development of intestinal type 3 immunity in neonates. The results showed that reduced oxygen levels in the small intestine of neonatal rats induced by Saccharomyces boulardii accelerated microbiome colonization and type 3 immunity development, which protected against Salmonella enterica serovar Typhimurium infection. Microbiome maturation increased the abundance of microbiome-encoded bile salt hydrolase (BSH) genes and hyocholic acid (HCA) levels.

View Article and Find Full Text PDF

Stabilizing the Fe Species of Nickel-Iron Double Hydroxide via Chelating Asymmetric Aldehyde-Containing THB Ligand for Long-Lasting Water Oxidation.

Adv Mater

December 2024

State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.

Nickel-iron layered double hydroxides (NiFe LDHs) are considered as promising substitutes for precious metals in oxygen evolution reaction (OER). However, most of the reported NiFe LDHs suffer from poor long-term stability because of the Fe loss during OER resulting in severe inactivation. Herein, a dynamically stable chelating interface through in situ transformation of asymmetric aldehyde-ligand (THB, 1,3,5-Tris(3'-hydroxy-4'-formylphenyl)-benzene) modified NiFe LDHs to anchor Fe and significantly enhance the OER stability is reported.

View Article and Find Full Text PDF

With the accelerated urbanization and economic development in Northwest China, the efficiency of urban wastewater treatment and the importance of water quality management have become increasingly significant. This work aims to explore urban wastewater treatment and carbon reduction mechanisms in Northwest China to alleviate water resource pressure. By utilizing online monitoring data from pilot systems, it conducts an in-depth analysis of the impacts of different wastewater treatment processes on water quality parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!