Single-atom nanozyme-based electrochemical sensors for health and food safety monitoring.

Food Chem

Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China. Electronic address:

Published: November 2023

Electrochemical sensors and biosensors play an important role in many fields, including biology, clinical trials, and food industry. For health and food safety monitoring, accurate and quantitative sensing is needed to ensure that there is no significantly negative impact on human health. It is difficult for traditional sensors to meet these requirements. In recent years, single-atom nanozymes (SANs) have been successfully used in electrochemical sensors due to their high electrochemical activity, good stability, excellent selectivity and high sensitivity. Here, we first summarize the detection principle of SAN-based electrochemical sensors. Then, we review the detection performances of small molecules on SAN-based electrochemical sensors, including HO, dopamine (DA), uric acid (UA), glucose, HS, NO, and O. Subsequently, we put forward the optimization strategies to promote the development of SAN-based electrochemical sensors. Finally, the challenges and prospects of SAN-based sensors are proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.136518DOI Listing

Publication Analysis

Top Keywords

electrochemical sensors
24
san-based electrochemical
12
sensors
8
health food
8
food safety
8
safety monitoring
8
electrochemical
7
single-atom nanozyme-based
4
nanozyme-based electrochemical
4
sensors health
4

Similar Publications

Wireless power-up and readout from a label-free biosensor.

Biomed Microdevices

January 2025

Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA.

Wearable and implantable biosensors have rapidly entered the fields of health and biomedicine to diagnose diseases and physiological monitoring. The use of wired medical devices causes surgical complications, which can occur when wires break, become infected, generate electrical noise, and are incompatible with implantable applications. In contrast, wireless power transfer is ideal for biosensing applications since it does not necessitate direct connections between measurement tools and sensing systems, enabling remote use of the biosensors.

View Article and Find Full Text PDF

Review of advances in glycan analysis on exosomes, cancer cells, and circulating cancer-derived glycoproteins with an emphasis on electrochemistry.

Anal Chim Acta

January 2025

Department of Biomedical Engineering, Korea University, Seoul, 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea. Electronic address:

Glycosylation, the intricate process of adding carbohydrate motifs to proteins, lipids, and exosomes on the cell surface, is crucial for both physiological and pathological mechanisms. Alterations in glycans significantly affect cancer cell metastasis by mediating cell-cell and cell-matrix interactions. The subtle changes in glycosylation during malignant transformations highlight the importance of analyzing cell and exosome surface glycosylation for prognostic and early treatment strategies in cancer.

View Article and Find Full Text PDF

Three-dimensional CeO Nanosheets/CuO nanoflowers p-n heterostructure supported on carbon cloth as electrochemical sensor for sensitive nitrite detection.

Anal Chim Acta

January 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130000, PR China. Electronic address:

Nitrite is widely used as a food additive, and it is of great significance to realize accurate detection of nitrite for food safety. Electrochemical technique is characterized by simple operation and portability, which enables rapid and accurate detection. The key factors affecting the nitrite detection performance are the electrocatalytic activity and interfacial electron transfer efficiency of the electrode.

View Article and Find Full Text PDF

Facet engineering of CuO for efficient electrochemical glucose sensing.

Anal Chim Acta

January 2025

Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, PR China. Electronic address:

Background: Accurate monitoring glucose level is significant for human health management, especially in the prevention, diagnosis, and management of diabetes. Electrochemical quantification of glucose is a convenient and rapid detection method, and the crucial aspect in achieving great sensing performance lies in the selection and design of the electrode material. Among them, CuO, with highly catalysis ability, is commonly used as electrocatalyst in non-enzymatic glucose sensing.

View Article and Find Full Text PDF

Wood membrane: A sustainable electrochemical platform for enzyme-free and pretreatment-free monitoring uric acid in bodily fluids.

Anal Chim Acta

January 2025

School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China. Electronic address:

The detection of biomarkers is crucial for assessing disease status and progression. Uric acid (UA), a common biomarker in body fluids, plays an important role in the diagnosis and monitoring of conditions such as hyperuricemia, chronic kidney disease, and cardiovascular disease. However, the low concentration of UA in non-invasive body fluids, combined with numerous interfering substances, makes its detection challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!