Advances in nanoparticle and organic formulations for prolonged controlled release of auxins.

Plant Physiol Biochem

Southern Federal University, ul. Bolshaya Sadovaya 105/42, Rostov-on-Don, 344006, Russian Federation.

Published: August 2023

Plant hormones have been well known since Charles Darwin as signaling molecules directing plant metabolism. Their action and transport pathways are at the top of scientific interest and were reviewed in many research articles. Modern agriculture applies phytohormones as supplements to achieve desired physiological plant response. Auxins are a class of plant hormones extensively used for crop management. Auxins stimulate the formation of lateral roots and shoots, seed germination, while extensively high concentrations of these chemicals act as herbicides. Natural auxins are unstable; light or enzyme action leads to their degradation. Moreover, the concentration dependant action of phytohormones denier one-shot injection of these chemicals and require constant slow additive of supplement. It obstructs the direct introduction of auxins. On the other hand, delivery systems can protect phytohormones from degradation and provide a slow release of loaded drugs. Moreover, this release can be managed by external stimuli like pH, enzymes, or temperature. The present review is focused on three auxins: indole-3-acetic, indole-3-butyric, and 1-naphthaleneacetic acids. We collected some examples of inorganic (oxides, Ag, layered double hydroxides) and organic (chitosan, organic formulations) delivery systems. The action of carriers can enhance auxin effects via protection and targeted delivery of loaded molecules. Moreover, nanoparticles can act as nano fertilizers, intensifying the phytohormone effect, providing slow controlled release. So delivery systems for auxins are extremely attractive for modern agriculture opening sustainable management of plant metabolism and morphogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2023.107808DOI Listing

Publication Analysis

Top Keywords

delivery systems
12
organic formulations
8
controlled release
8
plant hormones
8
plant metabolism
8
modern agriculture
8
auxins
7
plant
5
advances nanoparticle
4
nanoparticle organic
4

Similar Publications

Introduction: Prior research shows that in-person exposure to electronic nicotine delivery systems (ENDS) use increases desire for cigarettes and ENDS. However, less is known about the impact of cues delivered during remote interactions. This study extends previous in-person cue work by leveraging a remote confederate-delivered cue-delivery paradigm to evaluate the impact of dual nicotine vaping (vs.

View Article and Find Full Text PDF

Alopecia, a common dermatological condition, poses significant psychological and social challenges. Despite the availability of various treatments, their efficacy is often limited by poor bioavailability and delivery challenges. Nanostructured lipid carriers have emerged as promising advanced drug delivery systems for alopecia treatment due to their ability to encapsulate both hydrophilic and lipophilic compounds, enhancing their stability, solubility, and controlled release.

View Article and Find Full Text PDF

Microgravity-induced cardiac remodeling and dysfunction present significant challenges to long-term spaceflight, highlighting the urgent need to elucidate the underlying molecular mechanisms and develop precise countermeasures. Previous studies have outlined the important role of miRNAs in cardiovascular disease progression, with miR-199a-3p playing a crucial role in myocardial injury repair and the maintenance of cardiac function. However, the specific role and expression pattern of miR-199a-3p in microgravity-induced cardiac remodeling remain unclear.

View Article and Find Full Text PDF

Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli-responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non-specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion.

View Article and Find Full Text PDF

Negative pressure wound therapy (NPWT) is a very effective method in the treatment of dehiscent, infected, and non-healing wounds. Difficult wound healing occurs especially in late pregnancy due to the rapid enlargement of the uterus and the constantly increasing tension of the entire abdominal wall. In cases of dehiscence of the surgical wound during pregnancy, proper subsequent treatment is needed, where it is necessary to consider the safety of the mother as well as the fetus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!