A key scientific challenge during the outbreak of novel infectious diseases is to predict how the course of the epidemic changes under countermeasures that limit interaction in the population. Most epidemiological models do not consider the role of mutations and heterogeneity in the type of contact events. However, pathogens have the capacity to mutate in response to changing environments, especially caused by the increase in population immunity to existing strains, and the emergence of new pathogen strains poses a continued threat to public health. Further, in the light of differing transmission risks in different congregate settings (e.g., schools and offices), different mitigation strategies may need to be adopted to control the spread of infection. We analyze a multilayer multistrain model by simultaneously accounting for i) pathways for mutations in the pathogen leading to the emergence of new pathogen strains, and ii) differing transmission risks in different settings, modeled as network layers. Assuming complete cross-immunity among strains, namely, recovery from any infection prevents infection with any other (an assumption that will need to be relaxed to deal with COVID-19 or influenza), we derive the key epidemiological parameters for the multilayer multistrain framework. We demonstrate that reductions to existing models that discount heterogeneity in either the strain or the network layers may lead to incorrect predictions. Our results highlight that the impact of imposing/lifting mitigation measures concerning different contact network layers (e.g., school closures or work-from-home policies) should be evaluated in connection with their effect on the likelihood of the emergence of new strains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10268263 | PMC |
http://dx.doi.org/10.1073/pnas.2302245120 | DOI Listing |
Nanomicro Lett
January 2025
Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
Metallic nanowires have served as novel materials for soft electronics due to their outstanding mechanical compliance and electrical properties. However, weak adhesion and low mechanical robustness of nanowire networks to substrates significantly undermine their reliability, necessitating the use of an insulating protective layer, which greatly limits their utility. Herein, we present a versatile and generalized laser-based process that simultaneously achieves strong adhesion and mechanical robustness of nanowire networks on diverse substrates without the need for a protective layer.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Guangdong University of Technology, school of chemical engineering and light industry, Panyu, Guangzhou University City Outer Ring Road No. 100, 510006, Gaungzhou, CHINA.
Weak dipole interactions between highly symmetric H2O molecules and SO42- species are the root cause of unstable electric double layer (EDL), which triggers the hydrogen evolution reaction and Zn dendrite formation, significantly impeding the commercialization of aqueous zinc-ion batteries. Herein, we designed a microscopic split-phase interface (MSPI) by dual breaking of electron cloud and space structure symmetry to suppress interfacial side reactions and achieve uniform Zn deposition. The structurally asymmetric methylurea (MU) molecules possess both hydrophobic methyl and hydrophilic amino groups, which disrupt the continuity of H-bonding network and the aggregation state of H2O molecules, resulting in peculiar nanoscale core-shell-like clusters.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Evolutionary and Environmental Biology, and Institute of Evolution, University of Haifa, Haifa, Israel.
Our aim was to elucidate mechanisms underlying nitrogen (N)-deficiency tolerance in bread wheat (cultivar Ruta), conferred by a wild emmer wheat QTL (WEW; IL99). We hypothesised that the tolerance in IL99 is driven by enhanced N-uptake through modification of root system architecture (RSA) underscored by transcriptome modifications. Severe N-deficiency (0.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Solid-state lithium (Li) metal batteries (SSLMBs) have garnered considerable attention due to their potential for high energy density and intrinsic safety. However, their widespread development has been hindered by the low ionic conductivity of solid-state electrolytes. In this contribution, a novel Li-rich transport mechanism is proposed to achieve ultrafast Li-ion conduction in composite solid-state electrolytes.
View Article and Find Full Text PDFRegen Biomater
December 2024
Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
During the implantation process of cardiovascular implants, vascular damage caused by inflammation occurs, and the inflammatory process is accompanied by oxidative stress. Currently, carbon monoxide (CO) has been demonstrated to exhibit various biological effects including vasodilatation, antithrombotic, anti-inflammatory, apoptosis-inducing and antiproliferative properties. In this study, hemoglobin/epigallocatechin-3-gallate (EGCG) core-shell nanoparticle-containing coating on stainless steel was prepared for CO loading and inflammation modulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!