Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sparse additive machines (SAMs) have shown competitive performance on variable selection and classification in high-dimensional data due to their representation flexibility and interpretability. However, the existing methods often employ the unbounded or nonsmooth functions as the surrogates of 0-1 classification loss, which may encounter the degraded performance for data with outliers. To alleviate this problem, we propose a robust classification method, named SAM with the correntropy-induced loss (CSAM), by integrating the correntropy-induced loss (C-loss), the data-dependent hypothesis space, and the weighted l -norm regularizer ( q ≥ 1 ) into additive machines. In theory, the generalization error bound is estimated via a novel error decomposition and the concentration estimation techniques, which shows that the convergence rate O(n) can be achieved under proper parameter conditions. In addition, the theoretical guarantee on variable selection consistency is analyzed. Experimental evaluations on both synthetic and real-world datasets consistently validate the effectiveness and robustness of the proposed approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2023.3280349 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!