Bacteria engage in competitive interactions with neighbours that can either be of the same or different species. Multiple mechanisms are deployed to ensure the desired outcome and one tactic commonly implemented is the production of specialised metabolites. The Gram-positive bacterium uses specialized metabolites as part of its intra-species competition determinants to differentiate between kin and non-kin isolates. It is, however, unknown if the collection of specialized metabolites defines competitive fitness when the two isolates start as a close, interwoven community that grows into a densely packed colony biofilm. Moreover, the identity of specialized metabolites that have an active role in defining the outcome of an intra-species interaction has not been revealed. Here, we determine the competition outcomes that manifest when 21 environmental isolates of are individually co-incubated with the model isolate NCIB 3610 in a colony biofilm. We correlated these data with the suite of specialized metabolite biosynthesis clusters encoded by each isolate. We found that the gene cluster was primarily present in isolates with a strong competitive phenotype. This cluster is responsible for producing the epipeptide EpeX. We demonstrated that EpeX is a competition determinant of in an otherwise isogenic context for NCBI 3610. However, when we competed the NCIB 3610 EpeX-deficient strain against our suite of environmental isolates we found that the impact of EpeX in competition is isolate-specific, as only one of the 21 isolates showed increased survival when EpeX was lacking. Taken together, we have shown that EpeX is a competition determinant used by that impacts intra-species interactions but only in an isolate-specific manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614699 | PMC |
http://dx.doi.org/10.1099/mic.0.001344 | DOI Listing |
Food Funct
January 2025
Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.
View Article and Find Full Text PDFGenet Epidemiol
January 2025
Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.
Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.
1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) is a unique thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the formation of DXP, a branchpoint metabolite required for the biosynthesis of vitamins and isoprenoids in bacterial pathogens. DXPS has relaxed substrate specificity and utilizes a gated mechanism, equipping DXPS to sense and respond to diverse substrates. We speculate that pathogens utilize this distinct gated mechanism in different ways to support metabolic adaptation during infection.
View Article and Find Full Text PDFScand J Gastroenterol
January 2025
Norwegian PSC Research Centre, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway.
Objectives: Indications of mitochondrial dysfunction are commonly seen in liver diseases, but data are scarce in primary sclerosing cholangitis (PSC). Analyzing circulating and liver-resident molecules indirectly reflecting mitochondrial dysfunction, we aimed to comprehensively characterize this deficit in PSC, and whether this was PSC specific or associated with cholestasis.
Materials And Methods: We retrospectively included plasma from 191 non-transplant patients with large-duct PSC and 100 healthy controls and explanted liver tissue extracts from 24 PSC patients and 18 non-cholestatic liver disease controls.
Front Pharmacol
December 2024
Colorectal and Anal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China.
Ethnopharmacological Importance: Zhili decoction (ZLD) is a traditional Chinese medicine prescription for ulcerative colitis (UC). However, the mechanism by which ZLD exerts its therapeutic effects in the context of UC remains unclear.
Aim Of Study: The aim of this study was to investigate the effects of ZLD on the gut microbiota and related fecal metabolite levels using a mouse model of UC.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!