Concerns about ion suppression, spectral contamination, or interference have led to avoidance of polymers in mass spectrometry (MS)-based metabolomics. This avoidance, however, has left many biochemical fields underexplored, including wounds, which are often treated with adhesive bandages. Here, we found that despite previous concerns, the addition of an adhesive bandage can still result in biologically informative MS data. Initially, a test LC-MS analysis was performed on a mixture of known chemical standards and a polymer bandage extract. Results demonstrated successful removal of many polymer-associated features through a data processing step. Furthermore, the bandage presence did not interfere with metabolite annotation. This method was then implemented in the context of murine surgical wound infections covered with an adhesive bandage and inoculated with , , or a 1:1 mix of these pathogens. Metabolites were extracted and analyzed by LC-MS. On the bandage side, we observed a greater impact of infection on the metabolome. Distance analysis showed significant differences between all conditions and demonstrated that coinfected samples were more similar to -infected samples compared to -infected samples. We also found that coinfection was not merely a summative effect of each monoinfection. Overall, these results represent an expansion of LC-MS-based metabolomics to a novel, previously under-investigated class of samples, leading to actionable biological information.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10524476 | PMC |
http://dx.doi.org/10.1021/jasms.3c00066 | DOI Listing |
Adv Healthc Mater
January 2025
Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
Peripheral nerve injury is a common disease resulting in reversible and irreversible impairments of motor and sensory functions. In addition to conventional surgical interventions such as nerve grafting and neurorrhaphy, nerve guidance conduits are used to effectively support axonal growth without unexpected neuroma formation. However, there are still challenges to secure tissue-mimetic mechanical and electrophysiological properties of the conduit materials.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
This study introduces a novel bilayer wound dressing that integrates a quaternized chitosan-polyacrylic acid (QCs-PAA) sponge as the top layer with electrospun nanofibers containing curcumin as the bottom layer. For the first time, QCs and PAA were combined in an 80:20 ratio through freeze-drying to form a porous sponge layer with ideal structural properties, including 83 ± 6 % porosity and pore diameters of 290 ± 12.5 μm.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.
Current conventional wound dressings used for wound healing are often characterized by restricted bioactivity and devoid of multifunctionality resulting in suboptimal treatment and prolonged healing. Despite recent advances, the simultaneous incorporation of excellent flexibility, good mechanical performance, self-healing, bioactivity, and adhesion properties into the dressings without complicating their efficacy while maintaining simple synthesis remains a grand challenge. Herein, we effectively synthesized hybrid hydrogels of cellulose nanofiber (CNF), polyvinyl alcohol (PVA), and curcumin-modified silver nanoparticles (cAg) through a one-step synthesis method based on hydrogen bonds, dynamic boronic ester bonds, and coordinate covalent bonds.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.
Next-generation wound dressings with multiple biological functions hold promise for addressing the complications and pain associated with burn wounds. A hydrogel wound dressing loaded with a pain-relieving drug was developed for treating infected burn wounds. Polyvinyl alcohol chemically grafted with gallic acid (PVA-GA), sodium alginate chemically grafted with 3-aminobenzeneboronic acid (SA-PBA), Zn, and chitosan-coated borneol nanoparticles with anti-inflammatory and pain-relieving activities were combined to afford a nanoparticle-loaded hydrogel with a PVA-GA/Zn/SA-PBA network crosslinked via multiple physicochemical interactions.
View Article and Find Full Text PDFNano Lett
January 2025
Division of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa-shi, Saitama 359-8513, Japan.
Nanostructuring surfaces is an emergent strategy to endow materials with abilities to combat pathogenic bacteria. Nevertheless, it remains challenging to create nanospike structures on the curved surfaces of polymer materials, including gauze and other microfibrous medical materials. Additionally, the effects of nanostructured surfaces on bacteria in the presence of proteins and in vivo remain largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!