Background And Purpose: In deep brain stimulation (DBS), accurate electrode placement is essential for optimizing patient outcomes. Localizing electrodes enables insight into therapeutic outcomes and development of metrics for use in clinical trials. Methods of defining anatomical targets have been described with varying accuracy and objectivity. To assess variability in anatomical targeting, we compare four methods of defining an appropriate target for DBS of the subthalamic nucleus for Parkinson's disease.

Methods: The methods compared are direct visualization, red nucleus-based indirect targeting, mid-commissural point-based indirect targeting, and automated template-based targeting. This study assessed 226 hemispheres in 113 DBS recipients (39 females, 73 males, 62.2 ± 7.7 years). We utilized the electrode placement error (the Euclidean distance between the defined target and closest DBS electrode) as a metric for comparative analysis. Pairwise differences in electrode placement error across the four methods were compared using the Kruskal-Wallis H-test and Wilcoxon signed-rank tests.

Results: Interquartile ranges of the differences in electrode placement error spanned 1.18-1.56 mm. A Kruskal-Wallis H-test reported a statistically significant difference in the median of at least two groups (H(5) = 41.052, p < .001). Wilcoxon signed-rank tests reported statistically significant difference in two comparisons: direct visualization versus red nucleus-based indirect, and direct visualization versus automated template-based methods (T < 9215, p < .001).

Conclusions: All methods were similarly discordant in their relative accuracy, despite having significant technical differences in their application. The differing protocols and technical aspects of each method, however, have the implication that one may be more practical depending on the clinical or research application at hand.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946722PMC
http://dx.doi.org/10.1111/jon.13133DOI Listing

Publication Analysis

Top Keywords

electrode placement
16
placement error
12
anatomical targeting
8
subthalamic nucleus
8
deep brain
8
brain stimulation
8
methods defining
8
methods compared
8
indirect targeting
8
differences electrode
8

Similar Publications

Deep brain stimulation (DBS), a proven treatment for movement disorders, also holds promise for the treatment of psychiatric and cognitive conditions. However, for DBS to be clinically effective, it may require DBS technology that can alter or trigger stimulation in response to changes in biomarkers sensed from the patient's brain. A growing body of evidence suggests that such adaptive DBS is feasible, it might achieve clinical effects that are not possible with standard continuous DBS and that some of the best biomarkers are signals from the cerebral cortex.

View Article and Find Full Text PDF

Background: Brugada syndrome (BrS) is an inherited channelopathy characterized by right precordial ST-segment elevation. This study investigates the clinical and genetic characteristics of children with BrS in Hong Kong.

Methods: A retrospective review was conducted at the only tertiary pediatric cardiology center in Hong Kong from 2002 to 2022, including all pediatric BrS patients under 18 years old.

View Article and Find Full Text PDF

Intracortical microstimulation (ICMS) is a method for restoring sensation to people with paralysis as part of a bidirectional brain-computer interface (BCI) to restore upper limb function. Evoking tactile sensations of the hand through ICMS requires precise targeting of implanted electrodes. Here we describe the presurgical imaging procedures used to generate functional maps of the hand area of the somatosensory cortex and subsequent planning that guided the implantation of intracortical microelectrode arrays.

View Article and Find Full Text PDF

Objective: Targeted transcutaneous electrical nerve stimulation (tTENS) is a non-invasive neural stimulation technique that involves activating sensory nerve fibers to elicit tactile sensations in a distal, or referred, location. Though tTENS is a promising approach for delivering haptic feedback in virtual reality or for use by those with somatosensory deficits, it was not known how the perception of tTENS might be influenced by changing wrist position during sensorimotor tasks.

Approach: We worked with 12 able-bodied individuals and delivered tTENS by placing electrodes on the wrist, thus targeting the ulnar, median, and radial nerves, and eliciting tactile sensations in the hand.

View Article and Find Full Text PDF

Severe traumatic brain injury (TBI) poses significant public health challenges, but treatments like neurofeedback and hyperbaric oxygen therapy (HBOT) show promise in aiding recovery. Neurofeedback enhances brain healing through operant conditioning, while HBOT increases cerebral oxygenation, supporting cognitive recovery. A 33-year-old woman, after suffering a severe TBI in 2018 and a long rehabilitation, began HBOT and neurofeedback in late 2021.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!