Abstract: The BASE collaboration at the antiproton decelerator/ELENA facility of CERN compares the fundamental properties of protons and antiprotons with ultra-high precision. Using advanced Penning trap systems, we have measured the proton and antiproton magnetic moments with fractional uncertainties of 300 parts in a trillion (p.p.t.) and 1.5 parts in a billion (p.p.b.), respectively. The combined measurements improve the resolution of the previous best test in that sector by more than a factor of 3000. Very recently, we have compared the antiproton/proton charge-to-mass ratios with a fractional precision of 16 p.p.t., which improved the previous best measurement by a factor of 4.3. These results allowed us also to perform a differential matter/antimatter clock comparison test to limits better than %. Our measurements enable us to set limits on 22 coefficients of CPT- and Lorentz-violating standard model extensions (SME) and to search for potentially asymmetric interactions between antimatter and dark matter. In this article, we review some of the recent achievements and outline recent progress towards a planned improved measurement of the antiproton magnetic moment with an at least tenfold improved fractional accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10241734 | PMC |
http://dx.doi.org/10.1140/epjd/s10053-023-00672-y | DOI Listing |
Sci Rep
January 2025
National Research Council of Canada, NRC-Fields Mathematical Sciences Collaboration Centre, 222 College st., Toronto, ON, M5T 3J1, Canada.
Revealing interactions in complex systems from observed collective dynamics constitutes a fundamental inverse problem in science. Some methods may reveal undirected network topology, e.g.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India.
Nanomechanical responses (force-time profiles) of crystal lattices under deformation exhibit random critical jumps, reflecting the underlying structural transition processes. Despite extensive data collection, interpreting dynamic critical responses and their underlying mechanisms remains a significant challenge. This study explores a microscopic theoretical approach to analyse critical force fluctuations in martensitic transitions.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana 1000, Slovenia.
Liquid-liquid phase transitions play a pivotal role in various scientific disciplines and technological applications, ranging from biology to materials science and geophysics. Understanding the behavior of materials undergoing these transitions provides valuable insights into complex systems and their dynamic properties. This review explores the implications of liquid-liquid phase transitions, particularly focusing on the transition between low-density liquid (LDL) and high-density liquid (HDL) phases.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia.
Unlabelled: The gene encoding fungus mutanase (MutA, GH71 family, α-1,3-glucanase, EC 3.2.1.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
Since the debut of silicene in the experimental stage more than a decade ago, the family of two-dimensional elementary layers beyond graphene, called Xenes or transgraphenes, has rapidly expanded to include elements from groups II to VI of the periodic table. This expansion has opened pathways for the engineering of elementary monolayers that are inherently different from their bulk counterparts in terms of fundamental physical properties. Common guidelines for synthesizing Xenes can be categorized into well-defined methodological approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!