Background: Transcatheter aortic valve implantation is safe and effective for high-risk patients with bioprosthetic valve failure (BVF) but has not been studied in low- and intermediate-risk patients. One year outcomes of the PARTNER 3 Aortic Valve-in-valve (AViV) Study were evaluated.
Methods: This prospective, single-arm, multicenter study enrolled 100 patients from 29 sites with surgical BVF. The primary endpoint was a composite of all-cause mortality and stroke at 1 year. The key secondary outcomes included mean gradient, functional capacity, and rehospitalization (valve-related, procedure-related, or heart failure related).
Results: A total of 97 patients underwent AViV with a balloon-expandable valve from 2017 to 2019. Patients were 79.4% male with a mean age of 67.1 years and Society of Thoracic Surgeons score of 2.9%. The primary endpoint occurred in 2 patients (2.1%) who had strokes; there was no mortality at 1 year. Five patients (5.2%) had valve thrombosis events, and 9 patients (9.3%) had rehospitalizations, including 2 (2.1%) for strokes, 1 (1.0%) for heart failure, and 6 (6.2%) for aortic valve reinterventions (3 explants, 3 balloon dilations, and 1 percutaneous paravalvular regurgitation closure). From baseline to 1 year, New York Heart Association class III/IV decreased from 43.3% to 4.5%, mean gradient from 39.1 ± 18.2 mm Hg to 19.7 ± 7.6 mm Hg, and ≥moderate aortic regurgitation from 41.1% to 1.1%.
Conclusions: AViV with a balloon-expandable valve improved hemodynamic and functional status at 1 year and can provide an additional therapeutic option in selected low- or intermediate-risk patients with surgical BVF, although longer term follow-up is necessary.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10242574 | PMC |
http://dx.doi.org/10.1016/j.shj.2022.100077 | DOI Listing |
Gigascience
January 2025
Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Science, St. Petersburg, 194064, Russia.
Osteogenic differentiation is crucial in normal bone formation and pathological calcification, such as calcific aortic valve disease (CAVD). Understanding the proteomic and transcriptomic landscapes underlying this differentiation can unveil potential therapeutic targets for CAVD. In this study, we employed RNA sequencing transcriptomics and proteomics on a timsTOF Pro platform to explore the multiomics profiles of valve interstitial cells (VICs) and osteoblasts during osteogenic differentiation.
View Article and Find Full Text PDFJ Thorac Cardiovasc Surg
January 2025
Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA. Electronic address:
Objective: To characterize trends and outcomes of aortic valve replacement in patients <65 with aortic stenosis between 2013 and 2021.
Methods: This retrospective analysis included 9,557 patients who underwent biological aortic valve replacement in California, New York, and New Jersey from 2013 through 2021. Patients were stratified by approach: transcatheter aortic valve replacement (TAVR) versus surgical aortic valve replacement (SAVR).
J Thorac Cardiovasc Surg
January 2025
Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, GA.
J Mech Behav Biomed Mater
December 2024
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2, Dublin, Ireland; Discipline of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, 2, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Ireland. Electronic address:
Aortic stenosis is a prevalent disease that is treated with either mechanical or bioprosthetic valve replacement devices. However, these implants can experience problems with either functionality in the case of mechanical valves or long-term durability in the case of bioprosthetic valves. To enhance next generation prosthetic valves, such as biomimetic polymeric valves, an improved understanding of the native aortic valve leaflet structure and mechanical response is required to provide much needed benchmarks for future device development.
View Article and Find Full Text PDFAnn Cardiol Angeiol (Paris)
January 2025
Cardiology A Department, Ibn Sina Hospital, Mohammed V University, Faculty of Medicine and Pharmacy, Rabat, Morocco.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!