Conventionally, to produce a linear motion, one motor's stator is employed to drive one runner moving forward or backward. So far, there is almost no report of one electromechanical motor or piezoelectric ultrasonic motor that can directly generate two symmetrical linear motions, while this function is desired for precise scissoring and grasping in the minimally invasive surgery field. Herein, we report a brand-new symmetric-actuating linear piezoceramic ultrasonic motor capable of generating symmetrical linear motions of two outputs directly without additional mechanical transmission mechanisms. The key component of the motor is an (2 × 3) arrayed piezoceramic bar stator operating in the coupled resonant mode of the first longitudinal () and third bending () modes, leading to symmetric elliptical vibration trajectories at its two ends. A pair of microsurgical scissors is used as the end-effector, demonstrating a very promising future for high-precision microsurgical operations. The sliders of the prototype show the following features: (a) symmetrical, fast relative moving velocity (~1 m/s) outward or inward simultaneously; (b) high step resolution (40 nm); and (c) high power density (405.4 mW/cm) and high efficiency (22.1%) that are double those of typical piezoceramic ultrasonic motors, indicating the full capacity of symmetric-actuating linear piezoceramic ultrasonic motor working in symmetric operation principle. This work also has enlightening significance for future symmetric-actuating device designs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243895 | PMC |
http://dx.doi.org/10.34133/research.0156 | DOI Listing |
Ultrason Sonochem
December 2024
Ataturk University, Engineering Faculty, Environmental Engineering Department, Erzurum 25240, TÜRKİYE. Electronic address:
Ultrasonic oxidation provides the degradation of a wide range of water pollutants to the final products defined as carbon dioxide, short-chain organic acids, and inorganic ions, typically less toxic and favorable to biodegradation. In this study, it was investigated the application of novel ultrasonic reactor that allows the several combinations of low (20 kHz and 40 kHz) and high frequency ultrasonic piezoceramic transducer (578 kHz, 862 kHz and 1142 kHz) to degrade two main cyanobacterial toxins, Microcystin-RR (MC-RR) and Microcystin-LR (MC-LR). A plate transducer operating at different frequencies (40 kHz or 578 kHz/862 kHz/1142 kHz) was combined with a probe (20 kHz) as well as two plate transducers 40 kHz and 578 kHz/862 kHz/1142 kHz were combined to provide dual frequency ultrasonic reactor (DFUR).
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
Sensors (Basel)
August 2024
Department of Mechanical Engineering, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil.
Acoustic waves can be used for wireless telemetry as an alternative to situations where electrical or optical penetrators are unsuitable. However, the response of the ultrasonic transducer can be greatly affected by temperature variations, mechanical deformations, misalignment between transducers, and multiple layers in the propagation zone. Therefore, this work sought to quantify such influences on communication between ultrasonic transducers.
View Article and Find Full Text PDFMaterials (Basel)
August 2024
Department of Materials and Fabrication Engineering, Politehnica University Timisoara, Bulevardul Mihai Viteazul nr. 1, 300222 Timișoara, Romania.
Laser beam remelting is a relatively simple and highly effective technique for the physical modification of surfaces to improve resistance to cavitation erosion. In this study, we investigated the effect of laser remelting on the surface of cast stainless steel with 0.40% C, 25% Cr, 20% Ni, and 1.
View Article and Find Full Text PDFMaterials (Basel)
August 2024
AGH University of Krakow, Faculty of Mechanical Engineering and Robotics, Department of Robotics and Mechatronics, al. Mickiewicza 30, 30-059 Krakow, Poland.
Material nonlinearity is explored for the assessment of structural integrity. Crack-wave interactions are of particular interest. The major focus is on higher-order harmonics, generated in propagating shear horizontal (SH) waves.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!