Conventionally, to produce a linear motion, one motor's stator is employed to drive one runner moving forward or backward. So far, there is almost no report of one electromechanical motor or piezoelectric ultrasonic motor that can directly generate two symmetrical linear motions, while this function is desired for precise scissoring and grasping in the minimally invasive surgery field. Herein, we report a brand-new symmetric-actuating linear piezoceramic ultrasonic motor capable of generating symmetrical linear motions of two outputs directly without additional mechanical transmission mechanisms. The key component of the motor is an (2 × 3) arrayed piezoceramic bar stator operating in the coupled resonant mode of the first longitudinal () and third bending () modes, leading to symmetric elliptical vibration trajectories at its two ends. A pair of microsurgical scissors is used as the end-effector, demonstrating a very promising future for high-precision microsurgical operations. The sliders of the prototype show the following features: (a) symmetrical, fast relative moving velocity (~1 m/s) outward or inward simultaneously; (b) high step resolution (40 nm); and (c) high power density (405.4 mW/cm) and high efficiency (22.1%) that are double those of typical piezoceramic ultrasonic motors, indicating the full capacity of symmetric-actuating linear piezoceramic ultrasonic motor working in symmetric operation principle. This work also has enlightening significance for future symmetric-actuating device designs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243895PMC
http://dx.doi.org/10.34133/research.0156DOI Listing

Publication Analysis

Top Keywords

piezoceramic ultrasonic
16
ultrasonic motor
16
symmetric-actuating linear
12
linear piezoceramic
12
motor capable
8
symmetrical linear
8
linear motions
8
motor
6
piezoceramic
5
ultrasonic
5

Similar Publications

Dual-frequency ultrasonic oxidation of cyanobacterial toxins (MC-LR and MC-RR) at drinking water resources: Assessment of analytical methods and ultrasonic reactor configuration.

Ultrason Sonochem

December 2024

Ataturk University, Engineering Faculty, Environmental Engineering Department, Erzurum 25240, TÜRKİYE. Electronic address:

Ultrasonic oxidation provides the degradation of a wide range of water pollutants to the final products defined as carbon dioxide, short-chain organic acids, and inorganic ions, typically less toxic and favorable to biodegradation. In this study, it was investigated the application of novel ultrasonic reactor that allows the several combinations of low (20 kHz and 40 kHz) and high frequency ultrasonic piezoceramic transducer (578 kHz, 862 kHz and 1142 kHz) to degrade two main cyanobacterial toxins, Microcystin-RR (MC-RR) and Microcystin-LR (MC-LR). A plate transducer operating at different frequencies (40 kHz or 578 kHz/862 kHz/1142 kHz) was combined with a probe (20 kHz) as well as two plate transducers 40 kHz and 578 kHz/862 kHz/1142 kHz were combined to provide dual frequency ultrasonic reactor (DFUR).

View Article and Find Full Text PDF
Article Synopsis
  • Porous piezoelectric ceramics and composites offer benefits for ultrasonic transducers, including better decoupling of vibration modes and improved voltage sensitivity.
  • Researchers created porous lead zirconate titanate (PZT) ceramics using a freeze-cast technique, discovering that aligned pores enhance electromechanical properties while reducing acoustic impedance.
  • The study demonstrated a functioning piezoelectric ultrasonic transducer with a -6 dB bandwidth of 52% and a theoretical axial resolution of 520 μm, indicating its potential for nondestructive testing and imaging.
View Article and Find Full Text PDF

Acoustic waves can be used for wireless telemetry as an alternative to situations where electrical or optical penetrators are unsuitable. However, the response of the ultrasonic transducer can be greatly affected by temperature variations, mechanical deformations, misalignment between transducers, and multiple layers in the propagation zone. Therefore, this work sought to quantify such influences on communication between ultrasonic transducers.

View Article and Find Full Text PDF

Laser beam remelting is a relatively simple and highly effective technique for the physical modification of surfaces to improve resistance to cavitation erosion. In this study, we investigated the effect of laser remelting on the surface of cast stainless steel with 0.40% C, 25% Cr, 20% Ni, and 1.

View Article and Find Full Text PDF

Evaluation of Material Integrity Using Higher-Order Harmonic Generation in Propagating Shear Horizontal Ultrasonic Waves.

Materials (Basel)

August 2024

AGH University of Krakow, Faculty of Mechanical Engineering and Robotics, Department of Robotics and Mechatronics, al. Mickiewicza 30, 30-059 Krakow, Poland.

Material nonlinearity is explored for the assessment of structural integrity. Crack-wave interactions are of particular interest. The major focus is on higher-order harmonics, generated in propagating shear horizontal (SH) waves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!