Wood-inhabiting fungi are abundant in China, but their distribution is uneven, with more fungi in southwest China and fewer fungi in northwest China. During the investigation of wood-inhabiting fungi in Xinjiang, we collected a large number of specimens. Eight specimens growing on were collected from Tianshan Mountains, and they were described as two new species in and based on morphological characters and molecular evidence. is characterized by a cream to salmon-buff pore surface, larger pores measuring 1-3 per mm, and broadly ellipsoid basidiospores 5-6.5 × 3-4 μm. is characterized by annual to perennial basidiocarps, measuring 15 mm thick, pores 5-7 per mm, cream to rosy buff pore surface, and allantoid basidiospores 3-3.5 × 1-1.4 µm. Detailed illustrations and descriptions of the novel species are provided.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10242528 | PMC |
http://dx.doi.org/10.3897/mycokeys.98.102552 | DOI Listing |
MycoKeys
January 2025
College of Forestry, Southwest Forestry University, Kunming 650224, China Southwest Forestry University Kunming China.
In the ecosystem, wood-inhabiting fungi play an indispensable role in wood degradation and the cycle of substances. They are regarded as the "key player" in the process of wood decomposition because of their ability to produce various enzymes that break down woody lignin, cellulose, and hemicellulose. In this study, four new wood-inhabiting fungal species, , , , and , were collected from southwestern China and were proposed based on the morphological and molecular evidence.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan.
Oak wilt causes severe dieback of Quercus serrata, a dominant tree species in the lowlands across Japan. This study evaluated the effects of oak wilt on the wood-inhabiting fungal community and the decay rate of deadwood using a field monitoring experiment. We analysed the fungal metabarcoding community from 1200 wood samples obtained from 120 experimental logs from three forest sites at five different time points during the initial 1.
View Article and Find Full Text PDFMycoKeys
December 2024
Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, the Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China Southwest Forestry University Kunming China.
Three new fungal species, , and , are proposed based on a combination of the morphological features and molecular evidence. The taxon is characterized by the coriaceous basidiomata with a cream surface, cylindrical basidia, straight, 4-celled, subglobose or ovoid probasidia and thin-walled, narrowly cylindrical basidiospores with septa, measuring as 7-9 × 3.5-4.
View Article and Find Full Text PDFMycoKeys
December 2024
State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China Beijing Forestry University Beijing China.
Four new wood-inhabiting fungi viz. , , , and - are proposed based on a combination of morphological features and molecular evidence. is characterized by soft coriaceous basidiomata detachable from the substrate, becoming reddish brown in KOH, subulate cystidia with an obtuse apex.
View Article and Find Full Text PDFMycobiology
October 2024
State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China.
Owing to the production of lignin-modifying enzymes (LMEs), white-rot fungi (WRF) such as polypores are potent organisms in the biodegradation of xenobiotic pollutants. The nonspecific function of LMEs including laccase and manganese peroxidase (MnP), has enabled the use of WRF in biotechnological applications, particularly in bioremediation. In this study, 12 strains from nine white-rot basidiomycete genera viz.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!