AI Article Synopsis

  • Tianeptine is shown to activate mu-opioid receptors (MOR), which contributes to its effects on depression and anxiety.
  • The study tested tianeptine's action in MOR+/+ and MOR-/- mice, revealing that its analgesic, locomotor, and rewarding effects depend on the presence of MOR.
  • Chronic use of tianeptine may lead to tolerance, indicating a potential concern for long-term treatment.

Article Abstract

Introduction: Tianeptine is approved in some countries to treat depression and anxiety. In addition to its activity on serotonin and glutamate neurotransmission, tianeptine has been proven to be a mu-opioid receptor (MOR) agonist, but only a few preclinical studies have characterized the opioid-like behavioral effects of tianeptine.

Methods: In this study, we tested tianeptine activity on G protein activation using the [S35] GTPγS binding assay in brain tissue from MOR+/+ and MOR-/- mice. Then, to determine whether tianeptine behavioral responses are MOR-dependent, we characterized the analgesic, locomotor, and rewarding responses of tianeptine in MOR+/+ and MOR-/- mice using tail immersion, hot plate, locomotor, and conditioned place preference tests.

Results: Using the [S35] GTPγS binding assay, we found that tianeptine signaling is mediated by MOR in the brain with properties similar to those of DAMGO (a classic MOR agonist). Furthermore, we found that the MOR is necessary for tianeptine's analgesic (tail immersion and hot plate), locomotor, and rewarding (conditioned place preference) effects. Indeed, these behavioral effects could only be measured in MOR+/+ mice but not in MOR-/- mice. Additionally, chronic administration of tianeptine induced tolerance to its analgesic and hyperlocomotor effects.

Discussion: These findings suggest that tianeptine's opioid-like effects require MOR and that chronic use could lead to tolerance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10242025PMC
http://dx.doi.org/10.3389/fpsyt.2023.1186397DOI Listing

Publication Analysis

Top Keywords

mor-/- mice
12
mu-opioid receptor
8
mor agonist
8
behavioral effects
8
[s35] gtpγs
8
gtpγs binding
8
binding assay
8
mor+/+ mor-/-
8
locomotor rewarding
8
tail immersion
8

Similar Publications

Unlabelled: Many immunotherapies impact T cell function by impacting the immune synapse. While immunotherapy is extremely successful in some patients, in many others, it fails to help or causes complications, including immune-related adverse events. Phosphoprotein Associated with Glycosphingolipid Rich Microdomains 1 (PAG) is a transmembrane scaffold protein with importance in T cell signaling.

View Article and Find Full Text PDF

Morroniside (Mor) is a bioactive compound in Cornus officinalis with anti-inflammatory, neuroprotective and antioxidant properties. Prolonged use of the anesthetic sevoflurane (Sev) has been connected to the development postoperative cognitive dysfunction (POCD). This research aims to elucidate the mechanism of action of Mor to improve cognitive impairment.

View Article and Find Full Text PDF

The present study investigated the role of endothelial BDNF in cognition. Male adult mice with a selective knockout of BDNF in endothelial cells () and their wild-type littermates (WT) were subjected to tests for detection of anxiety- and depression-like behaviors and impaired recognition memory. Neuronal activity and synaptogenesis were assessed from hippocampal levels of c-fos and synaptophysin, respectively, and cerebral capillary density from forebrain levels of CD31.

View Article and Find Full Text PDF

Mu-opioid receptor knockout on Foxp2-expressing neurons reduces aversion-resistant alcohol drinking.

Pharmacol Biochem Behav

December 2024

Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA. Electronic address:

Mu-opioid receptors (MORs) in the amygdala and striatum are important in addictive and rewarding behaviors. The transcription factor Foxp2 is a genetic marker of intercalated (ITC) cells in the amygdala and a subset of striatal medium spiny neurons (MSNs), both of which express MORs in wild-type mice and are neuronal subpopulations of potential relevance to alcohol-drinking behaviors. For the current series of studies, we characterized the behavior of mice with genetic deletion of the MOR gene Oprm1 in Foxp2-expressing neurons (Foxp2-Cre/Oprm1).

View Article and Find Full Text PDF

Striosome circuitry stimulation inhibits striatal dopamine release and locomotion.

J Neurosci

December 2024

Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan

The mammalian striatum is divided into two types of anatomical structures: the island-like, mu opioid receptor (MOR)-rich striosome compartment and the surrounding matrix compartment. Both compartments have two types of spiny projection neurons (SPNs), dopamine receptor D1 (D1R)-expressing direct pathway SPNs (dSPNs) and dopamine receptor D2 (D2R)-expressing indirect pathway SPNs. These compartmentalized structures have distinct roles in the development of movement disorders, although the functional significance of the striosome compartment for motor control and dopamine regulation remains to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!