Transferring of data in machine learning from one party to another party is one of the issues that has been in existence since the development of technology. Health care data collection using machine learning techniques can lead to privacy issues which cause disturbances among the parties and reduces the possibility to work with either of the parties. Since centralized way of information transfer between two parties can be limited and risky as they are connected using machine learning, this factor motivated us to use the decentralized way where there is no connection but model transfer between both parties will be in process through a federated way. The purpose of this research is to investigate a model transfer between a user and the client(s) in an organization using federated learning techniques and reward the client(s) for their efforts with tokens accordingly using blockchain technology. In this research, the user shares a model to organizations that are willing to volunteer their service to provide help to the user. The model is trained and transferred among the user and the clients in the organizations in a privacy preserving way. In this research, we found that the process of model transfer between user and the volunteered organizations works completely fine with the help of federated learning techniques and the client(s) is/are rewarded with tokens for their efforts. We used the COVID-19 dataset to test the federation process, which yielded individual results of 88% for contributor a, 85% for contributor b, and 74% for contributor c. When using the FedAvg algorithm, we were able to achieve a total accuracy of 82%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10204011PMC
http://dx.doi.org/10.1007/s00500-023-08330-6DOI Listing

Publication Analysis

Top Keywords

machine learning
16
learning techniques
12
model transfer
12
health care
8
care data
8
transfer parties
8
transfer user
8
user clients
8
federated learning
8
learning
6

Similar Publications

Incidence of fall-from-height injuries and predictive factors for severity.

J Osteopath Med

January 2025

McAllen Department of Trauma, South Texas Health System, McAllen, TX, USA.

Context: The injuries caused by falls-from-height (FFH) are a significant public health concern. FFH is one of the most common causes of polytrauma. The injuries persist to be significant adverse events and a challenge regarding injury severity assessment to identify patients at high risk upon admission.

View Article and Find Full Text PDF

Liquid-Metal-Based Multichannel Strain Sensor for Sign Language Gesture Classification Using Machine Learning.

ACS Appl Mater Interfaces

January 2025

Centre for Robotics and Automation, Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.

Liquid metals are highly conductive like metallic materials and have excellent deformability due to their liquid state, making them rather promising for flexible and stretchable wearable sensors. However, patterning liquid metals on soft substrates has been a challenge due to high surface tension. In this paper, a new method is proposed to overcome the difficulties in fabricating liquid-state strain sensors.

View Article and Find Full Text PDF

Study Question: How accurately can artificial intelligence (AI) models predict sperm retrieval in non-obstructive azoospermia (NOA) patients undergoing micro-testicular sperm extraction (m-TESE) surgery?

Summary Answer: AI predictive models hold significant promise in predicting successful sperm retrieval in NOA patients undergoing m-TESE, although limitations regarding variability of study designs, small sample sizes, and a lack of validation studies restrict the overall generalizability of studies in this area.

What Is Known Already: Previous studies have explored various predictors of successful sperm retrieval in m-TESE, including clinical and hormonal factors. However, no consistent predictive model has yet been established.

View Article and Find Full Text PDF

Background: Pancreatic cancer is highly aggressive and has a low survival rate primarily due to late-stage diagnosis and the lack of effective early detection methods. We introduce here a novel, noninvasive urinary extracellular vesicle miRNA-based assay for the detection of pancreatic cancer from early to late stages.

Methods: From September 2019 to July 2023, Urine samples were collected from patients with pancreatic cancer (n = 153) from five distinct sites (Hokuto Hospital, Kawasaki Medical School Hospital, National Cancer Center Hospital, Kagoshima University Hospital, and Kumagaya General Hospital) and non-cancer participants (n = 309) from two separate sites (Hokuto Hospital and Omiya City Clinic).

View Article and Find Full Text PDF

Machine learning applications in healthcare clinical practice and research.

World J Clin Cases

January 2025

Department of Gastroenterology, Laiko General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece.

Machine learning (ML) is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis, thus creating machines that can complete tasks otherwise requiring human intelligence. Among its various applications, it has proven groundbreaking in healthcare as well, both in clinical practice and research. In this editorial, we succinctly introduce ML applications and present a study, featured in the latest issue of the .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!