Sodium-ion batteries (SIBs) are a possible candidate to create safe, sustainable, and cost-effective batteries. Solid sodium-ion conducting organically modified ionogel electrolytes are investigated. Silica-based ionogels typically consist of an ionic liquid electrolyte (ILE) confined within a silica matrix and possess high thermal stability, good ionic conductivity, safety, and good electrochemical stability. However, they readily deteriorate when stress is applied, decreasing the electrolyte's and battery's overall performance. The mechanical characteristics of silica can be improved using organic moieties, creating Ormosils®. Silica-based ionogels with phenyl-modified silanes improve the mechanical characteristics by a reduction of their Young's modulus (from 29 to 6 MPa). This is beneficial to the charge-transfer resistance, which decreases after implementing the electrolyte in half cells, demonstrating the improved interfacial contact. Most importantly, the phenyl groups change the interacting species at the silica interface. Cationic imidazolium species pi-stacked to the phenyl groups of the silica matrix, pushing the anions to the bulk of the ILE, which affects the ionic conductivity and electrochemical stability, and might affect the quality of the SEI in half cells. In essence, the work at hand can be used as a directory to improve mechanical characteristics and modify and control functional properties of ionogel electrolytes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202301862DOI Listing

Publication Analysis

Top Keywords

ionogel electrolytes
12
mechanical characteristics
12
sodium-ion batteries
8
silica-based ionogels
8
silica matrix
8
ionic conductivity
8
electrochemical stability
8
improve mechanical
8
half cells
8
phenyl groups
8

Similar Publications

Supramolecular ionogels enable highly efficient electrochromism.

Mater Horiz

January 2025

College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, 410082, Hunan, China.

Ionogels are a promising solution to improve the functionality of electrochromic devices (ECDs) by solving issues related to traditional liquid electrolytes, such as volatility, toxicity, and leakage. However, manufacturing ionogels is complicated as it often involves cross-linking polymerization or chemical sol-gel processes, requiring large amounts of inorganic or polymeric gelators. This results in low ionic conductivity and poor ECD performance.

View Article and Find Full Text PDF

Interplay of chain dynamics and ion transport on mechanical behavior and conductivity in ionogels.

Soft Matter

December 2024

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.

Understanding the interplay among the mechanical behavior, ionic conductivity and chain dynamics of ionogels is essential for designing flexible conductors that exhibit both high conductivity and excellent mechanical properties. In this study, ionogels were synthesized the radical polymerization of ,'-dimethylacrylamide (DMAA) and methacrylic acid (MAAc) monomers in the presence of ionic liquid 1-ethyl-3-methylimidazolium trifluoromethane sulfonate ([EMIM][OTf]). By varying the mass content of ionic liquid within ionogels, we investigated the mechanical behavior and ionic conductivity at the macroscopic scale using tensile, rheological testing and electrochemical impedance spectroscopy, as well as the dynamic behavior of chain segments and ions within the network at the microscopic scale using broadband dielectric relaxation spectroscopy (BDS) over a broad temperature range.

View Article and Find Full Text PDF

Designing Zwitterionic Bottlebrush Polymers to Enable Long-Cycling Quasi-Solid-State Lithium Metal Batteries.

Angew Chem Int Ed Engl

December 2024

Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R., 999077, P. R. China.

Ionogel polymer electrolyte (IPE), incorporating ionic liquid (IL) within a polymer matrix, presents a promising avenue for safe quasi-solid-state lithium metal batteries. However, sluggish Li kinetics, resulting from the formation of [Li(anion)] clusters and the occupation of Li transport sites by organic cations, limit their practical applications. In this study, we have developed zwitterionic bottlebrush polymers-based IPE with promoted Li conduction by employing poly(sulfobetaine methacrylate)-grafted poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVC-g-PSBMA) bottlebrushes as matrices of IL.

View Article and Find Full Text PDF

The deployment of solid and quasi-solid electrolytes in lithium metal batteries is envisioned to push their energy densities to even higher levels, in addition to providing enhanced safety. This article discusses a set of hybrid solid composite electrolytes which combine functional properties with electrode compatibility and manufacturability. Their anodic stability >5 V versus Li/Li and compatibility with lithium metal stem from the incorporated ionic liquid electrolyte, whereas the organic-inorganic hybrid host structure boosts their conductivity up to 2.

View Article and Find Full Text PDF

3D Printable Polymer Electrolytes for Ionic Conduction based on Protic Ionic Liquids.

Chemphyschem

November 2024

Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam-Golm, Germany.

A range of protic ionic liquids (PILs) based on tri-n-alkylammonium cations and mesylate/triflate anions were incorporated into a polymer matrix to form ionogels (IGs). These systems were investigated for their thermal and electrochemical behaviour, as well as under the aspect of ion motion via PFG-NMR. The ionic conductivities of the ILs/IGs are in the range of 10-10 S/cm at elevated temperatures and the diffusion coefficients are around 10 m s.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!