MicroRNAs (miRNAs) are a family of non-coding RNA molecules with vital roles in regulating gene expression. Although researchers have recognized the importance of miRNAs in the development of human diseases, it is very resource-consuming to use experimental methods for identifying which dysregulated miRNA is associated with a specific disease. To reduce the cost of human effort, a growing body of studies has leveraged computational methods for predicting the potential miRNA-disease associations. However, the extant computational methods usually ignore the crucial mediating role of genes and suffer from the data sparsity problem. To address this limitation, we introduce the multi-task learning technique and develop a new model called MTLMDA (Multi-Task Learning model for predicting potential MicroRNA-Disease Associations). Different from existing models that only learn from the miRNA-disease network, our MTLMDA model exploits both miRNA-disease and gene-disease networks for improving the identification of miRNA-disease associations. To evaluate model performance, we compare our model with competitive baselines on a real-world dataset of experimentally supported miRNA-disease associations. Empirical results show that our model performs best using various performance metrics. We also examine the effectiveness of model components via ablation study and further showcase the predictive power of our model for six types of common cancers. The data and source code are available from https://github.com/qwslle/MTLMDA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bib/bbad203 | DOI Listing |
Biomedicines
January 2025
Major of Big Data Convergence, Division of Data Information Science, Pukyong National University, Busan 48513, Republic of Korea.
Over the past few decades, micro ribonucleic acids (miRNAs) have been shown to play significant roles in various biological processes, including disease incidence. Therefore, much effort has been devoted to discovering the pivotal roles of miRNAs in disease incidence to understand the underlying pathogenesis of human diseases. However, identifying miRNA-disease associations using biological experiments is inefficient in terms of cost and time.
View Article and Find Full Text PDFBMC Genom Data
January 2025
Department of Management Information Systems, National Chung Hsing University, Taichung, 402, Taiwan.
Background: miRNAs (microRNAs) are endogenous RNAs with lengths of 18 to 24 nucleotides and play critical roles in gene regulation and disease progression. Although traditional wet-lab experiments provide direct evidence for miRNA-disease associations, they are often time-consuming and complicated to analyze by current bioinformatics tools. In recent years, machine learning (ML) and deep learning (DL) techniques are powerful tools to analyze large-scale biological data.
View Article and Find Full Text PDFMath Biosci Eng
December 2024
School of Computer and Information Science, Hunan Institute of Technology, Hengyang 412002, Hunan, China.
Sci Rep
January 2025
College of Information Science Technology, Hainan Normal University, Haikou, 571158, China.
MiRNAs and lncRNAs are two essential noncoding RNAs. Predicting associations between noncoding RNAs and diseases can significantly improve the accuracy of early diagnosis.With the continuous breakthroughs in artificial intelligence, researchers increasingly use deep learning methods to predict associations.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electricity and Energy, Selcuk University, Konya, Turkey.
microRNAs (miRNAs) are non-coding RNA molecules that influence the development and progression of many diseases. Research have documented that miRNAs have a significant role in the prevention, diagnosis, and treatment of complex human diseases. Recently, scientists have devoted extensive resources to attempting to find the connections between miRNAs and diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!