Since its first demonstration over 100 years ago, scattering-based light-sheet microscopy has recently re-emerged as a key modality in label-free tissue imaging and cellular morphometry; however, scattering-based light-sheet imaging with subcellular resolution remains an unmet target. This is because related approaches inevitably superimpose speckle or granular intensity modulation on to the native subcellular features. Here, we addressed this challenge by deploying a time-averaged pseudo-thermalized light-sheet illumination. While this approach increased the lateral dimensions of the illumination sheet, we achieved subcellular resolving power after image deconvolution. We validated this approach by imaging cytosolic carbon depots in yeast and bacteria with increased specificity, no staining, and ultralow irradiance levels. Overall, we expect this scattering-based light-sheet microscopy approach will advance single, live cell imaging by conferring low-irradiance and label-free operation towards eradicating phototoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbio.202300068 | DOI Listing |
Biomed Opt Express
September 2024
Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA.
We developed an algorithm for automatically analyzing scattering-based light sheet microscopy (sLSM) images of anal squamous intraepithelial lesions. We developed a method for automatically segmenting sLSM images for nuclei and calculating seven features: nuclear intensity, intensity slope as a function of depth, nuclear-to-nuclear distance, nuclear-to-cytoplasm ratio, cell density, nuclear area, and proportion of pixels corresponding to nuclei. 187 images from 80 anal biopsies were used for feature analysis and classifier development.
View Article and Find Full Text PDFJ Pharm Sci
September 2024
California Institute of Technology, Electrical Engineering, Pasadena, CA 91125, USA. Electronic address:
The characteristics of subvisible particles (SbVPs) are critical quality attributes of injectable and ophthalmic solutions in pharmaceutical manufacturing. However, current compendial SbVP testing methods, namely the light obstruction method and the microscopic particle count method, are destructive and wasteful of target samples. In this study, we present the development of a non-destructive SbVP analyzer aiming to analyze SbVPs directly in drug product (DP) containers while keeping the samples intact.
View Article and Find Full Text PDFJ Biomed Opt
June 2024
Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States.
Significance: The ability to observe and monitor cell density and morphology has been imperative for assessing the health of a cell culture and for producing high quality, high yield cell cultures for decades. Microcarrier-based cultures, used for large-scale cellular expansion processes, are not compatible with traditional visualization-based methods, such as widefield microscopy, due to their thickness and material composition.
Aim: Here, we assess the optical imaging compatibilities of commercial polystyrene microcarriers versus custom-fabricated gelatin methacryloyl (gelMA) microcarriers for non-destructive and non-invasive visualization of the entire microcarrier surface, direct cell enumeration, and sub-cellular visualization of mesenchymal stem/stromal cells.
Mod Pathol
June 2024
Department of Pathology, Stanford University School of Medicine, Stanford, California. Electronic address:
Demand for anal cancer screening is expected to rise following the recent publication of the Anal Cancer-HSIL Outcomes Research trial, which showed that treatment of high-grade squamous intraepithelial lesions significantly reduces the rate of progression to anal cancer. While screening for human papillomavirus-associated squamous lesions in the cervix is well established and effective, this is less true for other sites in the lower anogenital tract. Current anal cancer screening and prevention rely on high-resolution anoscopy with biopsies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, 40126 Bologna, Italy.
Proteins are broadly versatile biochemical materials, whose functionality is tightly related to their folding state. Native folding can be lost to yield misfolded conformations, often leading to formation of protein oligomers, aggregates, and biomolecular phase condensates. The fluorogenic hyaluronan HA-RB, a nonsulfonated glycosaminoglycan with a combination of polyanionic character and of hydrophobic spots due to rhodamine B dyes, binds to early aggregates of the model protein cytoplasmic glyceraldehyde-3-phosphate dehydrogenase 1 from (AtGAPC1) since the very onset of the oligomeric phase, making them brightly fluorescent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!