Novel mutations in a second primary gastric cancer in a patient treated for primary colon cancer.

World J Surg Oncol

Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.

Published: June 2023

A 60-year-old man presented with complaints of abdominal pain and melena. Patient had a history of colon cancer 16 years back and had undergone right hemi colectomy for microsatellite instability (MSI) negative, mismatch repair (MMR) stable, T2N0 disease with no mutations on next-generation sequencing (NGS). Investigations revealed a second primary in stomach (intestinal type of adenocarcinoma) with no recurrent lesions in colon or distant metastasis. He was started on CapOx with Bevacizumab and developed gastric outlet obstruction. Total gastrectomy with D2 lymphadenectomy and Roux-en-Y oesophageao-jejunal pouch anastomosis was done. The histopathology showed intestinal type of adenocarcinoma with pT3N2 disease. NGS showed 3 novel mutations in KMT2A, LTK, and MST1R gene. The pathway enrichment analysis and Gene Ontology were carried out, followed by the construction of protein-protein interaction network to discover associations among the genes. The results suggested that these mutations have not been reported in gastric cancer earlier and despite not having a direct pathway of carcinogenesis they probably act through modulation of host of miRNA's. Further studies are needed to investigate the role of KMT2A, LTK, and MST1R gene in gastric carcinogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10246045PMC
http://dx.doi.org/10.1186/s12957-023-03057-yDOI Listing

Publication Analysis

Top Keywords

novel mutations
8
second primary
8
gastric cancer
8
colon cancer
8
intestinal type
8
type adenocarcinoma
8
kmt2a ltk
8
ltk mst1r
8
mst1r gene
8
mutations second
4

Similar Publications

Luteinizing hormone receptor knockout mouse: What has it taught us?

Andrology

January 2025

Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London, UK.

Luteinizing hormone (LH), along with its agonist choriongonadotropin (hCG) in humans, is the key hormone responsible for the tropic regulation of the gonadal function. LH and hCG act through their cognate receptor, the luteinizing hormone/choriongonadotropin receptor (LHCGR; more appropriately LHR in rodents lacking CG), located in the testis in Leydig cells and in the ovary in theca, luteal, and luteinizing granulosa cells. Low levels in LHCGR are also expressed in numerous extragonadal sites.

View Article and Find Full Text PDF

In chronic lymphocytic leukemia, the reliability of next-generation sequencing (NGS) to detect variants ≤10% allelic frequency (low-VAF) is debated. We tested the ability to detect 23 such variants in 41 different laboratories using their NGS method of choice. The sensitivity was 85.

View Article and Find Full Text PDF

Glycogen storage disease type IV (GSD IV) is a rare disease caused by a defect in glycogen branching enzyme 1 (GBE1), which played a crucial role in glycogen branching. GSD IV occurs once in approximately 1 in every 760,000 to 960,000 live births and is inherited in an autosomal recessive pattern. Early diagnosis of GSD IV is challenging due to non-specific symptoms, such as liver and spleen enlargement, which can overlap with other hematologic and hepatobiliary disorders.

View Article and Find Full Text PDF

Signal transducer and activator of transcription 1 (STAT1) gene mutations have broad clinical phenotypes, classified by the inheritance pattern and functional state. Individuals with autosomal dominant STAT1 deficiency are more susceptible to intracellular bacteria, the hallmark of which is Mendelian susceptibility to mycobacterial diseases (MSMDs) that are associated with increased risks of invasive disease by weakly virulent mycobacteria. We report a novel heterozygous missense mutation in exon 23 of the STAT1 gene (NM_007315.

View Article and Find Full Text PDF

Genomic analysis has played a significant role in the identification of driver mutations that are linked to disease progression and response to drug treatment in ovarian cancer. A prominent example is the stratification of epithelial ovarian cancer (EOC) patients with homologous recombination deficiency (HRD) characterized by mutations in DNA damage repair genes such as for treatment with PARP inhibitors. However, recent studies have shown that some epithelial ovarian tumors respond to PARP inhibitors irrespective of their HRD or mutation status.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!