Background: The time between the appearance of successive leaves, or phyllochron, characterizes the vegetative development of annual plants. Hypothesis testing models, which allow the comparison of phyllochrons between genetic groups and/or environmental conditions, are usually based on regression of thermal time on the number of leaves; most of the time a constant leaf appearance rate is assumed. However regression models ignore auto-correlation of the leaf number process and may lead to biased testing procedures. Moreover, the hypothesis of constant leaf appearance rate may be too restrictive.

Methods: We propose a stochastic process model in which emergence of new leaves is considered to result from successive time-to-events. This model provides a flexible and more accurate modeling as well as unbiased testing procedures. It was applied to an original maize dataset collected in the field over three years on plants originating from two divergent selection experiments for flowering time in two maize inbred lines.

Results And Conclusion: We showed that the main differences in phyllochron were not observed between selection populations but rather between ancestral lines, years of experimentation and leaf ranks. Our results highlight a strong departure from the assumption of a constant leaf appearance rate over a season which could be related to climate variations, even if the impact of individual climate variables could not be clearly determined.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10245529PMC
http://dx.doi.org/10.1186/s13007-023-01029-7DOI Listing

Publication Analysis

Top Keywords

constant leaf
12
leaf appearance
12
appearance rate
12
hypothesis testing
8
testing procedures
8
leaf
5
successive time-to-event
4
time-to-event model
4
model phyllochron
4
phyllochron dynamics
4

Similar Publications

Marginal response of non-structural carbohydrates and increased biomass in a dominant shrub (Dasiphora fruticosa) to water table decline in a minerotrophic peatland.

Plant Biol (Stuttg)

January 2025

Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China.

Assessing how dominant peatland species, such as Dasiphora fruticosa, adapt to water table decline is crucial to advance understanding of their growth and survival strategies. Currently, most studies have primarily focused on their growth and biomass, with limited knowledge on the response of non-structural carbohydrates (NSCs) and physiological adaptations of these woody plants under long-term drainage. This study assessed the response of photosynthesis and transpiration rates, biomass, and NSC concentrations (including soluble sugars and starch) in the leaves, stems, and roots of D.

View Article and Find Full Text PDF

The Potential of an Artificially Ultraviolet B Irradiated Hay as a Source of Vitamin D.

J Anim Physiol Anim Nutr (Berl)

January 2025

Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.

Article Synopsis
  • Roughage in herbivore diets can be an important source of vitamin D, with levels varying based on factors like plant species, maturity, and UVB exposure.
  • UVB light promotes the conversion of provitamin D to vitamin D, which significantly impacts vitamin D content in forages.
  • In a study, ergocalciferol levels in roughage increased significantly with UVB exposure, highlighting the potential of hay as a valuable vitamin D source for herbivores and emphasizing the need to consider UVB's effects in both practical and research contexts.
View Article and Find Full Text PDF

The raising economic importance of cannabis arouses interest in positively influencing the secondary plant constituents through external stimuli. One potential possibility to enhance the secondary metabolite profile is the use of UV light. In this study, the influence of spectral UV quality at different intensity levels on photomorphogenesis, growth, inflorescence yield, and secondary metabolite composition was investigated.

View Article and Find Full Text PDF

In this work, Terminalia chebula leaf extract was used to synthesize CuO-CoO nanoparticles, which were then embedded in a rice straw biochar. This new biochar-based nano-catalyst is used to photocatalytically degrade a variety of dyes (Eosin Y, Trypan Blue, Crystal Violet, Methylene Blue, Brilliant Green), as well as a binary mixture of Eosin Y and Trypan Blue dyes. It is also used for the catalytic reduction of nitro compounds (4-NP, 3-NP, and Picric acid).

View Article and Find Full Text PDF

The impact of gradient variable temperature fermentation on the quality of cigar tobacco leaves.

Front Microbiol

December 2024

Cigar Fermentation Technology Key Laboratory of China Tobacco, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China.

Introduction: In order to enhance the quality of cigar tobacco leaves (CTLs), a gradient variable temperature fermentation approach was employed.

Methods: The temperature gradient demonstrated a gradual increase from low temperature (35 ± 2°C) to moderate temperature (45 ± 2°C), and then to high temperature (55 ± 2°C). Each temperature gradient underwent a 10-day fermentation process, resulting in a total duration of 30 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!