This study concerns the analysis of navigational risk indicators as a function of the ship's domain width estimated for nine selected representative ships sailing under various hydrometeorological conditions (average and deteriorated ones) observed within the Offshore Wind Farm to be constructed within the Polish offshore zone on the Baltic Sea. For this purpose, the authors compare three types of domain parameters according to the guidelines by the PIANC, Coldwell and Rutkowski (3D). The study enabled selection of a group of ships which can be considered safe and can optionally be allowed to navigate and/or fish in the immediate vicinity and within the offshore wind farm. The analyses required the use of hydrometeorological data, mathematical models and operating data obtained with the use of maritime navigation and manoeuvring simulators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10247786PMC
http://dx.doi.org/10.1038/s41598-023-36114-3DOI Listing

Publication Analysis

Top Keywords

offshore wind
12
wind farm
12
analysis navigational
8
navigational risk
8
risk indicators
8
indicators function
8
function ship's
8
ship's domain
8
domain width
8
baltic sea
8

Similar Publications

Exploring offshore particle motion soundscapes.

J Acoust Soc Am

January 2025

Center for Acoustics Research and Education, University of New Hampshire, Durham, New Hampshire 03823, USA.

Fishes and aquatic invertebrates utilize acoustic particle motion for hearing, and some additionally detect sound pressure. Yet, few underwater soundscapes studies report particle motion, which is often assumed to scale predictably with pressure in offshore habitats. This relationship does not always exist for low frequencies or near reflective boundaries.

View Article and Find Full Text PDF

Strain-specific virulence of Perkinsus marinus and related species in Eastern oysters: A comprehensive analysis of immune responses and mortality.

Fish Shellfish Immunol

January 2025

Department of Aquatic Life Medicine, College of Ocean and Biosciences, Kunsan National University, Gunsan, 54150, Republic of Korea; Research Institute of Fisheries Science in Offshore Wind Farm (RIFSO), Kunsan National University, 558 Daehakro, Gunsan, 54150, Republic of Korea. Electronic address:

In this study, we investigated the variability in virulence among different strains of Perkinsus marinus and other Perkinsus species in Eastern oysters (Crassostrea virginica), examining the immune responses and mortality rates of oysters exposed to different Perkinsus isolates. Compared with the other assessed strains, P. marinus strain ATCC 50787 was found to induce significantly (P < 0.

View Article and Find Full Text PDF

Decoding the drivers of variability in chlorophyll-a concentrations in the Pearl River Estuary: Intra-annual and inter-annual analyses of environmental influences.

Environ Res

January 2025

School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China.

Temporal variability and associated driving factors of sea surface chlorophyll-a concentration (Chl-a) in coastal waters have been extensively studied worldwide; however, the importance and spatial heterogeneity of these driving factors remain insufficiently documented. This study addressed this gap by investigating the Pearl River Estuary (PRE) from August 2002 to June 2016, using long-term remote sensing-derived data of Chl-a and potential driving factors, including total suspended solids (TSS), precipitation, photosynthetically active radiation (PAR), and sea surface temperature (SST); and in situ measurements of potential driving factors, including river discharge, wind speed, alongshore wind (u), cross-shore wind (v), and tidal range. A pixel-by-pixel correlation analysis was conducted to preliminarily examine the relationships between these potential driving factors and Chl-a.

View Article and Find Full Text PDF

Independent pitch control (IPC) is a crucial technology for enhancing the performance of wind turbines, optimizing the power output, and reducing the loads by managing each blade. This paper explores the primary vibration modes of semi-submersible wind turbines under wind-wave coupling. Given the effectiveness of pitch control in vibration suppression, this paper addresses the limitations of conventional collective pitch control (CPC) by designing an independent pitch control method based on an equivalent wind speed model (EWIPC).

View Article and Find Full Text PDF

Based on the background of the continuously rising global demand for clean energy, offshore wind power, as an important form of renewable energy utilization, is booming. However, the pile foundations of offshore wind turbines are subject to long-term erosion in the harsh marine environment, and the problem of corrosion damage is prominent, which seriously threatens the safe and stable operation of the wind power system. In view of this, a meshless numerical simulation method based on smoothed particle hydrodynamics (SPH) and a method for generating the concrete meso-structures are developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!