Objective: To describe efficacy, safety, and patient-reported outcomes (PROs) in patients with rheumatoid arthritis (RA) with an inadequate response to conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) treated with tofacitinib or biological DMARDs (bDMARDs) in real-life conditions.

Methods: A noninterventional study was performed between March 2017 and September 2019 at 13 sites in Colombia and Peru. Outcomes measured at baseline and at the 6-month follow-up were disease activity (RAPID3 [Routine Assessment of Patients Index Data] score), functional status (HAQ-DI [Health Assessment Questionnaire] score), and quality of life (EQ-5D-3L [EuroQol Questionnaire]). The Disease Activity Score-28 (DAS28-ESR) and frequency of adverse events (AEs) were also reported. Unadjusted and adjusted differences from baseline were estimated and expressed as the least squares mean difference (LSMD).

Results: Data from 100 patients treated with tofacitinib and 70 patients with bDMARDs were collected. At baseline, the patients' mean age was 53.53 years (SD 13.77), the mean disease duration was 6.31 years (SD 7.01). The change from baseline at month 6 was not statistically significant different in the adjusted LSMD [SD] for tofacitinib vs. bDMARDs for RAPID3 score (-2.55[.30] vs. -2.52[.26]), HAQ-DI score (-.56[.07] vs. -.50[.08]), EQ-5D-3L score (.39[.04] vs. .37[.04]) and DAS28-ESR (-2.37[.22] vs. -2.77[.20]). Patients from both groups presented similar proportions of nonserious and serious AEs. No deaths were reported.

Conclusion: Changes from baseline were not statistically significantly different between tofacitinib and bDMARDs in terms of RAPID3 scores and secondary outcomes. Patients from both groups presented similar proportions of nonserious and serious AEs.

Clinical Trial Number: NCT03073109.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.reumae.2023.02.006DOI Listing

Publication Analysis

Top Keywords

treated tofacitinib
12
tofacitinib bdmards
12
patient-reported outcomes
8
outcomes patients
8
patients treated
8
bdmards real-life
8
disease activity
8
patients groups
8
groups presented
8
presented proportions
8

Similar Publications

The Janus kinase/signal transducer and activator of transfection (JAK/STAT) system is comprised of multiple cell surface receptors, receptor tyrosine kinases, and signal transducers that are key components of numerous systems involved in malignancy, inflammation, immune surveillance and development, cellular proliferation, metabolism, differentiation, apoptosis, and hematologic disorders, all of which when disrupted can produce severe disease. Nevertheless, small molecule inhibitors of the four known JAKs, termed JAKinibs, have found therapeutic indications for a broad category of diseases. In this perspective, I will summarize the development of JAK inhibitors, whose origins were in antiquity, with particular attention to their use in treating patients with inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

Background: Ulcerative colitis patients who undergo ileal pouch-anal anastomosis (IPAA) without mucosectomy may develop inflammation of the rectal cuff (cuffitis). Treatment of cuffitis typically includes mesalamine suppositories or corticosteroids, but refractory cuffitis may necessitate advanced therapies or procedural interventions. This review aims to summarize the existing literature regarding treatments options for cuffitis.

View Article and Find Full Text PDF

Introduction/aims: Tofacitinib, a first-generation Janus kinase (JAK) 1/3 inhibitor, is commonly used for treating ulcerative colitis and rheumatoid arthritis. However, its role in myasthenia gravis (MG) remains unclear. This study aimed to evaluate the immunomodulatory effects of tofacitinib on experimental autoimmune myasthenia gravis (EAMG) and peripheral blood mononuclear cells (PBMCs) from patients with MG.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) significantly aggravates human dignity and quality of life. While newly approved amyloid immunotherapy has been reported, effective AD drugs remain to be identified. Here, we propose a novel AI-driven drug-repurposing method, DeepDrug, to identify a lead combination of approved drugs to treat AD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!