Memories already consolidated when reactivated return to a labile state and can be modified, this process is known as reconsolidation. It is known the Wnt signaling pathways can modulate hippocampal synaptic plasticity as well as learning and memory. Yet, Wnt signaling pathways interact with NMDA (N-methyl-D-aspartate) receptors. However, whether canonical Wnt/β-catenin and non-canonical Wnt/Ca2 + signaling pathways are required in the CA1 region of hippocampus for contextual fear memory reconsolidation remains unclear. So, here we verified that the inhibition of canonical Wnt/β-catenin pathway with DKK1 (Dickkopf-1) into CA1 impaired the reconsolidation of contextual fear conditioning (CFC) memory when administered immediately and 2 h after reactivation session but not 6 h later, while the inhibition of non-canonical Wnt/Ca signaling pathway with SFRP1 (Secreted frizzled-related protein-1) into CA1 immediately after reactivation session had no effect. Moreover, the impairment induced by DKK1 was blocked by the administration of the agonist of the NMDA receptors glycine site, D-Serine, immediately and 2 h after reactivation session. We found that hippocampal canonical Wnt/β-catenin is necessary to the reconsolidation of CFC memory at least two hours after reactivation, while non-canonical Wnt/Ca signaling pathway is not involved in this process and, that there is a link between Wnt/β-catenin signaling pathway and NMDA receptors. In view of this, this study provides new evidence regarding the neural mechanisms underlying contextual fear memory reconsolidation and contributes to provide a new possible target for the treatment of fear related disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2023.05.028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!