Prediction of birthweight and risk of macrosomia in pregnancies complicated by diabetes.

Am J Obstet Gynecol MFM

Division of Maternal-Fetal Medicine (Mr Shulman and Drs Aviram and Melamed), Department of Obstetrics and Gynecology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada. Electronic address:

Published: August 2023

AI Article Synopsis

Article Abstract

Background: Antenatal detection of accelerated fetal growth and macrosomia in pregnancies complicated by diabetes mellitus is important for patient counseling and management. Sonographic fetal weight estimation is the most commonly used tool to predict birthweight and macrosomia. However, the predictive accuracy of sonographic fetal weight estimation for these outcomes is limited. In addition, an up-to-date sonographic fetal weight estimation is often unavailable before birth. This may result in a failure to identify macrosomia, especially in pregnancies complicated by diabetes mellitus where care providers might underestimate fetal growth rate. Therefore, there is a need for better tools to detect and alert care providers to the potential risk of accelerated fetal growth and macrosomia.

Objective: This study aimed to develop and validate prediction models for birthweight and macrosomia in pregnancies complicated by diabetes mellitus.

Study Design: This was a completed retrospective cohort study of all patients with a singleton live birth at ≥36 weeks of gestation complicated by preexisting or gestational diabetes mellitus observed at a single tertiary center between January 2011 and May 2022. Candidate predictors included maternal age, parity, type of diabetes mellitus, information from the most recent sonographic fetal weight estimation (including estimated fetal weight, abdominal circumference z score, head circumference-to-abdomen circumference z score ratio, and amniotic fluid), fetal sex, and the interval between ultrasound examination and birth. The study outcomes were macrosomia (defined as birthweights >4000 and >4500 g), large for gestational age (defined as a birthweight >90th percentile for gestational age), and birthweight (in grams). Multivariable logistic regression models were used to estimate the probability of dichotomous outcomes, and multivariable linear regression models were used to estimate birthweight. Model discrimination and predictive accuracy were calculated. Internal validation was performed using the bootstrap resampling technique.

Results: A total of 2465 patients met the study criteria. Most patients had gestational diabetes mellitus (90%), 6% of patients had type 2 diabetes mellitus, and 4% of patients had type 1 diabetes mellitus. The overall proportions of infants with birthweights >4000 g, >4500 g, and >90th percentile for gestational age were 8%, 1%, and 12%, respectively. The most contributory predictor variables were estimated fetal weight, abdominal circumference z score, ultrasound examination to birth interval, and type of diabetes mellitus. The models for the 3 dichotomous outcomes had high discriminative accuracy (area under the curve receiver operating characteristic curve, 0.929-0.979), which was higher than that achieved with estimated fetal weight alone (area under the curve receiver operating characteristic curve, 0.880-0.931). The predictive accuracy of the models had high sensitivity (87%-100%), specificity (84%-92%), and negative predictive values (84%-92%). The predictive accuracy of the model for birthweight had low systematic and random errors (0.6% and 7.5%, respectively), which were considerably smaller than the corresponding errors achieved with estimated fetal weight alone (-5.9% and 10.8%, respectively). The proportions of estimates within 5%, 10%, and 15% of the actual birthweight were high (52.3%, 82.9%, and 94.9%, respectively).

Conclusion: The prediction models developed in the current study were associated with greater predictive accuracy for macrosomia, large for gestational age, and birthweight than the current standard of care that includes estimated fetal weight alone. These models may assist care providers in counseling patients regarding the optimal timing and mode of delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajogmf.2023.101042DOI Listing

Publication Analysis

Top Keywords

fetal weight
36
diabetes mellitus
32
predictive accuracy
20
estimated fetal
20
macrosomia pregnancies
16
pregnancies complicated
16
complicated diabetes
16
sonographic fetal
16
weight estimation
16
type diabetes
16

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!