Transcutaneous electrical stimulation (TCES) of the spinal cord induces changes in spinal excitability. Motor imagery (MI) elicits plasticity in the motor cortex. It has been suggested that plasticity occurring in both cortical and spinal circuits might underlie the improvements in performance observed when training is combined with stimulation. We investigated the acute effects of cervical TCES and MI delivered in isolation or combined on corticospinal excitability, spinal excitability and manual performance. Participants (N = 17) completed three sessions during which they engaged in 20 min of: 1) MI, listening to an audio recording instructing to complete the purdue pegboard test (PPT) of manual performance; 2) TCES at the spinal level of C5-C6; 3) MI + TCES, listening to the MI script while receiving TCES. Before and after each condition, we measured corticospinal excitability via transcranial magnetic stimulation (TMS) at 100% and 120% motor threshold (MT), spinal excitability via single-pulse TCES and manual performance with the PPT. Manual performance was not improved by MI, TCES or MI + TCES. Corticospinal excitability assessed at 100% MT intensity increased in hand and forearm muscles after MI and MI + TCES, but not after just TCES. Conversely, corticospinal excitability assessed at 120% MT intensity was not affected by any of the conditions. The effects on spinal excitability depended on the recorded muscle: it increased after all conditions in biceps brachii (BB) and flexor carpi radialis (FCR); did not change after any conditions in the abductor pollicis brevis (APB); increased after TCES and MI + TCES, but not after just MI in the extensor carpi radialis (ECR). These findings suggest that MI and TCES increase the excitability of the central nervous system through different but complementary mechanisms, inducing changes in the excitability of spinal and cortical circuits. MI and TCES can be used in combination to modulate spinal/cortical excitability, an approach particularly relevant for people with limited residual dexterity who cannot engage in motor practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropsychologia.2023.108613DOI Listing

Publication Analysis

Top Keywords

spinal excitability
16
corticospinal excitability
16
manual performance
16
excitability
12
tces
10
acute effects
8
motor imagery
8
transcutaneous electrical
8
electrical stimulation
8
spinal
8

Similar Publications

Fentanyl is a potent synthetic opioid widely used perioperatively and illicitly as a drug of abuse . It is well established that fentanyl acts as a μ-opioid receptor agonist, signaling through Gα intracellular pathways to inhibit electrical excitability, resulting in analgesia and respiratory depression . However, fentanyl uniquely also triggers muscle rigidity, including respiratory muscles, hindering the ability to execute central respiratory commands or to receive external resuscitation.

View Article and Find Full Text PDF

Circadian pattern in restless legs syndrome.

Handb Clin Neurol

January 2025

Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.

This chapter provides an overview of circadian pattern in restless legs syndrome (RLS). Circadian variation of symptoms is a known feature of RLS. According to one of the five essential criteria for RLS diagnosis, symptoms "only occur or are worse in the evening or at night than during the day.

View Article and Find Full Text PDF

An optogenetic mouse model of hindlimb spasticity after spinal cord injury.

Exp Neurol

January 2025

Brain and Mind Research Institute, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada. Electronic address:

Spasticity is a common comorbidity of spinal cord injury (SCI), disrupting motor function and resulting in significant discomfort. While elements of post-SCI spasticity can be assessed using pre-clinical SCI models, the robust measurement of spasticity severity can be difficult due to its periodic and spontaneous appearance. Electrical stimulation of sensory afferents can elicit spasticity-associated motor responses, such as spasms; however, placing surface electrodes on the hindlimbs of awake animals can induce stress or encumbrance that could influence the expression of behaviour.

View Article and Find Full Text PDF

Duhuo Jisheng Mixture attenuates neuropathic pain by inhibiting S1PR1/P2YR pathway after Chronic Constriction Injury in mice.

Phytomedicine

January 2025

Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Changle West Street 15, Xi'an, Shaanxi, 710032, China. Electronic address:

Background: The pathogenesis of neuropathic pain is complex and lacks effective clinical treatment strategies. Medical plants and herbal extracts from traditional Chinese medicine with multi-target comprehensive effects have attracted great attention from scientists.

Purpose: To investigate the pharmacological active components and mechanism underlying the anti-neuralgia effect of classic analgesic formulas Duhuo Jisheng Mixture (DJM).

View Article and Find Full Text PDF

Resting-State EEG Oscillations in Amyotrophic Lateral Sclerosis (ALS): Toward Mechanistic Insights and Clinical Markers.

J Clin Med

January 2025

Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland.

Amyotrophic lateral sclerosis (ALS) is a complex, progressive neurodegenerative disorder characterized by the degeneration of motor neurons in the brain, brainstem, and spinal cord. Several neuroimaging techniques can help reveal the pathophysiology of ALS. One of these is the electroencephalogram (EEG), a noninvasive and relatively inexpensive tool for examining electrical activity of the brain with excellent temporal precision.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!