Background: As diagnostic and prognostic models developed by traditional statistics perform poorly in real-world, artificial intelligence (AI) and Big Data (BD) may improve the supply chain of heart transplantation (HTx), allocation opportunities, correct treatments, and finally optimize HTx outcome. We explored available studies, and discussed opportunities and limits of medical application of AI to the field of HTx.
Method: A systematic overview of studies published up to December 31st, 2022, in English on peer-revied journals, have been identified through PUBMED-MEDLINE-WEB of Science, referring to HTx, AI, BD. Studies were grouped in 4 domains based on main studies' objectives and results: etiology, diagnosis, prognosis, treatment. A systematic attempt was made to evaluate studies by the Prediction model Risk Of Bias ASsessment Tool (PROBAST) and the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD).
Results: Among the 27 publications selected, none used AI applied to BD. Of the selected studies, 4 fell in the domain of etiology, 6 in the domain of diagnosis, 3 in the domain of treatment, and 17 in that of prognosis, as AI was most frequently used for algorithmic prediction and discrimination of survival, but in retrospective cohorts and registries. AI-based algorithms appeared superior to probabilistic functions to predict patterns, but external validation was rarely employed. Indeed, based on PROBAST, selected studies showed, to some extent, significant risk of bias (especially in the domain of predictors and analysis). In addition, as example of applicability in the real-world, a free-use prediction algorithm developed through AI failed to predict 1-year mortality post-HTx in cases from our center.
Conclusions: While AI-based prognostic and diagnostic functions performed better than those developed by traditional statistics, risk of bias, lack of external validation, and relatively poor applicability, may affect AI-based tools. More unbiased research with high quality BD meant for AI, transparency and external validations, are needed to have medical AI as a systematic aid to clinical decision making in HTx.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijmedinf.2023.105110 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!