A boronic acid catalyzed carbon-carbon and carbon-nitrogen bond-forming reaction for the functionalization of various π-activated alcohols has been developed. Ferrocenium boronic acid hexafluoroantimonate salt was identified as an effective catalyst in the direct deoxygenative coupling of alcohols with a variety of potassium trifluoroborate and organosilane nucleophiles. In a comparison between these two classes of nucleophiles, the use of organosilanes leads to higher reaction yields, increased diversity of the alcohol substrate scope, and high / selectivity. Furthermore, the reaction proceeds under mild conditions and yields up to 98%. Computational studies provide a rationalization for a mechanistic pathway for the retention of / stereochemistry when or alkenyl silanes are used as nucleophiles. This methodology is complementary to existing methodologies for deoxygenative coupling reactions involving organosilanes, and it is effective with a variety of organosilane nucleophile sub-types, including allylic, vinylic, and propargylic trimethylsilanes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10337667PMC
http://dx.doi.org/10.1021/acs.joc.3c00463DOI Listing

Publication Analysis

Top Keywords

boronic acid
12
deoxygenative coupling
12
ferrocenium boronic
8
acid catalyzed
8
coupling alcohols
8
catalyzed deoxygenative
4
alcohols carbon-
4
carbon- nitrogen-based
4
nitrogen-based borate
4
borate silane
4

Similar Publications

Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.

View Article and Find Full Text PDF

Fluorescent distinguishing flavonoid glycosides against aglycones based on the selective recognization of boric acid-functional Eu(III)-organic framework.

Talanta

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China. Electronic address:

Flavonoid glycosides are formed by dehydration condensation of aglycones and sugar molecules. Therefore, discrimination of flavonoid glycosides from their corresponding aglycones is a challenging task because they contain the same aglycone part in their molecular structures. Herein, boric acid-functional Eu(III)-organic framework (BA-Eu-MOF) was applied to discriminate flavonoid glycosides including baicalin (Bai), wogonoside (Wog), rutin (Rut), puerarin (Pue), quercitrin (Que) and astragalin (Ast) from their corresponding aglycones for the first time.

View Article and Find Full Text PDF

Heteroaryl-Fused Triazapentalenes: Synthesis and Aggregation-Induced Emission.

Molecules

January 2025

Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.

A pyridine-fused triazapentalene shows weak fluorescence in solution and is readily accessible via nitrene-mediated cyclization. In this study, a modified Cadogan reaction was used to synthesize . Palladium-catalyzed reactions have been used as post-functionalization methods.

View Article and Find Full Text PDF

Silk-engineered bioactive nanoparticles for targeted alleviation of acute inflammatory disease via macrophage reprogramming.

J Nanobiotechnology

January 2025

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China.

Significant progress has been made in the development of potential therapies for diseases associated with inflammation and oxidative stress. Nevertheless, the availability of effective clinical treatments remains limited. Herein, we introduce a novel silk-based bioactive material, TPSF, developed by sequentially conjugating Tempol and phenylboronic acid pinacol ester to silk fibroin.

View Article and Find Full Text PDF

Review of advances in glycan analysis on exosomes, cancer cells, and circulating cancer-derived glycoproteins with an emphasis on electrochemistry.

Anal Chim Acta

January 2025

Department of Biomedical Engineering, Korea University, Seoul, 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea. Electronic address:

Glycosylation, the intricate process of adding carbohydrate motifs to proteins, lipids, and exosomes on the cell surface, is crucial for both physiological and pathological mechanisms. Alterations in glycans significantly affect cancer cell metastasis by mediating cell-cell and cell-matrix interactions. The subtle changes in glycosylation during malignant transformations highlight the importance of analyzing cell and exosome surface glycosylation for prognostic and early treatment strategies in cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!