Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hydrogen bonds play a critical role in the folding and stability of proteins, such as proteins and nucleic acids, by providing strong and directional interactions. They help to maintain the secondary and 3D structure of proteins, and structural changes in these molecules often result from the formation or breaking of hydrogen bonds. To gain insights into these hydrogen bonding networks, we applied two machine learning models - a logistic regression model and a decision tree model - to study four variants of thrombin: wild-type, ΔK9, E8K, and R4A. Our results showed that both models have their unique advantages. The logistic regression model highlighted potential key residues (GLU295) in thrombin's allosteric pathways, while the decision tree model identified important hydrogen bonding motifs. This information can aid in understanding the mechanisms of folding in proteins and has potential applications in drug design and other therapies. The use of these two models highlights their usefulness in studying hydrogen bonding networks in proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11164249 | PMC |
http://dx.doi.org/10.1021/acs.jcim.3c00153 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!