A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reagentless Dissolution and Quantification of Particulate Lead in Tap Water via Membrane Electrolysis. | LitMetric

The presence of particulate Pb in tap water has been a limiting factor in the design of accurate and portable platforms for quantifying this toxic metal. Convenient and affordable electrochemical techniques are blind toward particulate species and thus require addition of reagents and additional chemical processing such as sample acidification. This study describes the fundamentals and the first use of membrane electrolysis for the reagentless sample preparation of tap water for the detection of particulate Pb contaminants. Membrane electrolysis allows for the in-situ generation of nitric acid, which, in combination with anodic stripping voltammetry, provides a powerful tool for the accurate and reagent-free detection of Pb. The configuration of the setup allows for its semi-autonomous operation and requires minimal attention, making electrochemical methods more suitable and accessible for continuous measurements of particulate contaminants in tap-water. The voltammetric response is linear in the range of 24.1-398 nM of Pb, which covers the action level of 48 nM suggested by the World Health Organization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c01201DOI Listing

Publication Analysis

Top Keywords

tap water
12
membrane electrolysis
12
particulate contaminants
8
particulate
5
reagentless dissolution
4
dissolution quantification
4
quantification particulate
4
particulate lead
4
lead tap
4
water membrane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!