Magnetic nanoparticles are being increasingly used in numerous biomedical applications for diagnosis and therapy. During the course of these applications nanoparticle biodegradation and body clearance may occur. In this context, a portable, non-invasive, non-destructive and contactless imaging device can be relevant to trace the nanoparticle distribution before and after the medical procedure. We present a method for in vivo imaging the nanoparticles based on the magnetic induction technique, and we show how to properly tune it for magnetic permeability tomography, maximizing the permeability selectivity. A tomograph prototype was designed and built to demonstrate the feasibility of the proposed method. It includes data collection, signal processing and image reconstruction. Useful selectivity and resolution are achieved on phantoms and animals, proving that the device can be used to monitor the presence of magnetic nanoparticles without requiring any particular sample preparation. By this way, we show that magnetic permeability tomography may become a powerful technique to assist medical procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2023.3283787DOI Listing

Publication Analysis

Top Keywords

magnetic nanoparticles
12
permeability tomography
12
magnetic permeability
8
magnetic
5
imaging magnetic
4
nanoparticles
4
permeability
4
nanoparticles permeability
4
tomography magnetic
4
nanoparticles increasingly
4

Similar Publications

Ultrasensitive Detection of Circulating Plasma Cells Using Surface-Enhanced Raman Spectroscopy and Machine Learning for Multiple Myeloma Monitoring.

Anal Chem

January 2025

Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.

Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.

View Article and Find Full Text PDF

Multifunctional Microflowers for Precise Optoacoustic Localization and Intravascular Magnetic Actuation In Vivo.

Adv Healthc Mater

January 2025

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zürich, Winterthurerstrasse 190, Zurich, 8057, Switzerland.

Efficient drug delivery remains a significant challenge in modern medicine and pharmaceutical research. Micrometer-scale robots have recently emerged as a promising solution to enhance the precision of drug administration through remotely controlled navigation within microvascular networks. Real-time tracking is crucial for accurate guidance and confirmation of target arrival.

View Article and Find Full Text PDF

A Versatile Dual-Responsive Shape-Memory Gripper via Additive Manufacturing Toward High-Performance Cross-Scale Objects Maneuvering.

Small

January 2025

Department of Materials Physics and New Energy Device School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China.

Smart grippers serving as soft robotics have garnered extensive attentions owing to their great potentials in medical, biomedical, and industrial fields. Though a diversity of grippers that account for manipulating the small objects (e.g.

View Article and Find Full Text PDF

Iron oxide-based nanoparticles are promising materials for cancer thermal therapy and immunotherapy. However, several proofs of concept reported data with murine tumor models that might have limitations for clinical translation. Magnetite is nowadays the most popular nanomaterial, but doping with distinct ions can enhance thermal therapy, namely, magnetic nanoparticle hyperthermia (MNH) and photothermal therapy (PTT).

View Article and Find Full Text PDF

The capture of magnetic nanoparticles (MNPs) is essential in the separation and detection of MNPs for applications such as magnetic biosensing. The sensitivity of magnetic biosensors inherently depends upon the distribution of captured MNPs within the sensing area. We previously demonstrated that the distribution of MNPs captured from evaporating droplets by ferromagnetic antidot nanostructures can be controlled via an external magnetic field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!