Enhanced production of difficult-to-express proteins through knocking down rnpA gene expression.

Biotechnol J

Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.

Published: October 2023

Escherichia coli has been employed as a workhorse for the efficient production of recombinant proteins. However, some proteins were found to be difficult to produce in E. coli. The stability of mRNA has been considered as one of the important factors affecting recombinant protein production. Here we report a generally applicable and simple strategy for enhancing mRNA stability, and consequently improving recombinant protein production in E. coli. RNase P, a ribozyme comprising an RNA subunit (RnpB) and a protein subunit (RnpA), is involved in tRNA maturation. Based on the finding that purified RnpA can digest rRNA and mRNA in vitro, it was reasoned that knocking down the level of RnpA might enhance recombinant protein production. For this, the synthetic small regulatory RNA-based knockdown system was applied to reduce the expression level of RnpA. The developed RnpA knockdown system allowed successful overexpression of 23 different recombinant proteins of various origins and sizes, including Cas9 protein, antibody fragment, and spider silk protein. Notably, a 284.9-kDa ultra-high molecular weight, highly repetitive glycine-rich spider silk protein, which is one of the most difficult proteins to produce, could be produced to 1.38 g L , about two-fold higher than the highest value previously achieved, by a fed-batch culture of recombinant E. coli strain employing the RnpA knockdown system. The RnpA-knockdown strategy reported here will be generally useful for the production of recombinant proteins including those that have been difficult to produce.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.202200641DOI Listing

Publication Analysis

Top Keywords

recombinant proteins
12
recombinant protein
12
protein production
12
knockdown system
12
production recombinant
8
difficult produce
8
level rnpa
8
rnpa knockdown
8
spider silk
8
silk protein
8

Similar Publications

Background: In the diagnosis of linear IgA bullous dermatosis (LABD), detection of IgA at the epidermal basement membrane zone and circulating IgA autoantibodies are essential. The disease has two subtypes, lamina lucida-type and sublamina densa-type, with 120 kDa LAD-1 and 97 kDa LABD97 as major autoantigens for lamina lucida-type. Normal human epidermal keratinocytes (NHEK) and HaCaT cells are widely used for immunoblotting (IB) in the diagnosis process, but they do not provide high sensitivity and semiquantitative analysis.

View Article and Find Full Text PDF

Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.

View Article and Find Full Text PDF

Background: Developing effective targeted treatment approaches to overcome drug resistance remains a crucial goal in cancer research. Immunotoxins have dual functionality in cancer detection and targeted therapy.

Objective: This study aimed to engineer a recombinant chimeric fusion protein by combining a nanobody-targeting domain with an exotoxin effector domain.

View Article and Find Full Text PDF

Unlabelled: Diabetic macular edema (DME) is a leading cause of visual impairment and blindness among diabetic patients, its prevalence is continuing to increase worldwide. Faricimab, a bispecific antibody, represents a new generation of treatments for DME.

Purpose: This study presents an indirect comparison of the effectiveness and safety of faricimab versus other treatment options for DME.

View Article and Find Full Text PDF

Purpose: This study evaluates the efficacy of intravitreal injections (IVI) of faricimab in patients with neovascular age-related macular degeneration (nAMD) and retinal pigment epithelium detachment (RPED) resistant to other anti-VEGF agents.

Material And Methods: The study included 61 patients (61 eyes) with nAMD previously treated with aflibercept and/or brolucizumab IVIs. Three groups were formed: group 1 received aflibercept IVI (32 eyes), group 2 received brolucizumab IVI (14 eyes), and group 3 received aflibercept followed by brolucizumab IVI (15 eyes).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!