Visible-light-driven Oxygen Vacancy and Carbon Doping of C@TiO Photocatalyst for Enhanced Pollutants Degradation Performance.

Chemphyschem

School of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning, 530006, P. R. China.

Published: September 2023

Oxygen Vacancy (OVs) and carbon doping of the photocatalyst body will significantly enhance the photocatalytic efficiency. However, synchronous regulation of these two aspects is challenging. In this paper, a novel C@TiO photocatalyst was designed by coupling the surface defect and doping engineering of titania, which can effectively remove rhodamine B (RhB) and has a relatively high performance with wide pH range, high photocatalytic activity and good stability. Within 90 minutes, the photocatalytic degradation rate of RhB by C@TiO (94.1 % at 20 mg/L) is 28 times higher than that of pure TiO . Free radical trapping experiments and electron spin resonance techniques reveal that superoxide radicals (⋅O ) and photogenerated holes (h ) play key roles in the photocatalytic degradation of RhB. This study demonstrates the possibility of regulating photocatalysts to degrade pollutants in wastewater based on an integrated strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202300183DOI Listing

Publication Analysis

Top Keywords

oxygen vacancy
8
carbon doping
8
c@tio photocatalyst
8
photocatalytic degradation
8
visible-light-driven oxygen
4
vacancy carbon
4
doping c@tio
4
photocatalyst enhanced
4
enhanced pollutants
4
pollutants degradation
4

Similar Publications

The symmetry breaking that is formed when oxide layers are combined epitaxially to form heterostructures has led to the emergence of new functionalities beyond those observed in the individual parent materials. SrTiO-based heterostructures have played a central role in expanding the range of functional properties arising at the heterointerface and elucidating their mechanistic origin. The heterostructure formed by the epitaxial combination of spinel γ-AlO and perovskite SrTiO constitutes a striking example with features distinct from perovskite/perovskite counterparts such as the archetypical LaAlO/SrTiO heterostructure.

View Article and Find Full Text PDF

Microbe-mediated synthesis of defect-rich CeO nanoparticles with oxidase-like activity for colorimetric detection of L-penicillamine and glutathione.

Nanoscale

January 2025

College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.

To enhance production efficiency, curtail costs, and minimize environmental impact, developing simple and sustainable nanozyme synthesis methods has been the focus of relevant research. In this report, graphite-coated CeO nanoparticles (CeO NPs) with multiple defects (Ce defects, oxygen vacancies and carbon defects) were synthesized the culture filtrate of the extremely radioresistant bacterium R12 ( R12). The as-prepared CeO NPs exhibit remarkable oxidase (OXD)-like activity, efficiently catalyzing the oxidation of the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) to form oxTMB, even in the absence of HO.

View Article and Find Full Text PDF

Nanoscale Titanium Oxide Memristive Structures for Neuromorphic Applications: Atomic Force Anodization Techniques, Modeling, Chemical Composition, and Resistive Switching Properties.

Nanomaterials (Basel)

January 2025

Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, Taganrog 347922, Russia.

This paper presents the results of a study on the formation of nanostructures of electrochemical titanium oxide for neuromorphic applications. Three anodization synthesis techniques were considered to allow the formation of structures with different sizes and productivity: nanodot, lateral, and imprint. The mathematical model allowed us to calculate the processes of oxygen ion transfer to the reaction zone; the growth of the nanostructure due to the oxidation of the titanium film; and the formation of TiO, TiO, and TiO oxides in the volume of the growing nanostructure and the redistribution of oxygen vacancies and conduction channel.

View Article and Find Full Text PDF

This review highlights recent progress in utilizing iron oxide nanoparticles (IONPs) as a safer alternative to gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging (MRI). It consolidates findings from multiple studies, discussing current T contrast agents (CAs), the synthesis techniques for IONPs, the theoretical principles for designing IONP-based MRI CAs, and the key factors that impact their T contrast efficacy, such as nanoparticle size, morphology, surface modifications, valence states, and oxygen vacancies. Furthermore, we summarize current strategies to achieve IONP-based responsive CAs, including self-assembly/disassembly and distance adjustment.

View Article and Find Full Text PDF

Engineering Lattice Dislocations of TiO Support of PdZn-ZnO Dual-Site Catalysts to Boost CO Hydrogenation to Methanol.

Angew Chem Int Ed Engl

December 2024

Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China.

CO hydrogenation to methanol using green hydrogen derived from renewable resources provides a promising method for sustainable carbon cycle but suffers from high selectivity towards byproduct CO. Here, we develop an efficient PdZn-ZnO/TiO catalyst by engineering lattice dislocation structures of TiO support. We discover that this modification orders irregularly arranged atoms in TiO to stabilize crystal lattice, and consequently weakens electronic interactions with supported active phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!