A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatial organization and proteome of a dual-species cyanobacterial biofilm alter among N-fixing and non-fixing conditions. | LitMetric

Many disciplines have become increasingly interested in cyanobacteria, due to their ability to fix CO while using water and sunlight as electron and energy sources. Further, several species of cyanobacteria are also capable of fixing molecular nitrogen, making them independent of the addition of nitrate or ammonia. Thereby they hold huge potential as sustainable biocatalysts. Here, we look into a dual-species biofilm consisting of filamentous diazotrophic cyanobacteria sp. PCC 7712 and heterotrophic bacteria VLB 120 growing in a capillary biofilm reactor. Such systems have been reported to enable high cell densities continuous process operation. By combining confocal laser scanning and helium-ion microscopy with a proteomics approach, we examined these organisms' interactions under two nitrogen-feeding strategies: N-fixing and nitrate assimilation. Not only did facilitate the biofilm formation by forming a carpet layer on the surface area but also did N-fixing biofilms show greater attachment to the surface. proteins related to surface and cell attachments were observed in N-fixing biofilms in particular. Furthermore, co-localized biofilm cells displayed a resilient response to extra shear forces induced by segmented media/air flows. This study highlights the role of in the initial attachment process, as well as the effects of different nitrogen-feeding strategies and operation regimes on biofilm composition and growth. IMPORTANCE Cyanobacteria are highly interesting microorganisms due to their ability to synthesize sugars from CO while using water and sunlight as electron and energy sources. Further, many species are also capable of utilizing molecular nitrogen, making them independent of artificial fertilizers. In this study, such organisms are cultivated in a technical system, which enables them to attach to the reactor surface, and form three-dimensional structures termed biofilms. Biofilms achieve extraordinarily high cell densities. Furthermore, this growth format allows for continuous processing, both being essential features in biotechnological process development. Understanding biofilm growth and the influence technical settings and media composition have on biofilm maturation and stability are crucial for reaction and reactor design. These findings will help to open up these fascinating organisms for applications as sustainable, resource-efficient industrial workhorses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308936PMC
http://dx.doi.org/10.1128/msystems.00302-23DOI Listing

Publication Analysis

Top Keywords

biofilm
8
water sunlight
8
sunlight electron
8
electron energy
8
energy sources
8
sources species
8
molecular nitrogen
8
nitrogen making
8
making independent
8
high cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!