Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
During the last century, fluorescence microscopy has played a pivotal role in a range of scientific discoveries. The success of fluorescence microscopy has prevailed despite several shortcomings like measurement time, photobleaching, temporal resolution, and specific sample preparation. To bypass these obstacles, label-free interferometric methods have been developed. Interferometry exploits the full wavefront information of laser light after interaction with biological material to yield interference patterns that contain information about structure and activity. Here, we review recent studies in interferometric imaging of plant cells and tissues, using techniques such as biospeckle imaging, optical coherence tomography, and digital holography. These methods enable quantification of cell morphology and dynamic intracellular measurements over extended periods of time. Recent investigations have showcased the potential of interferometric techniques for precise identification of seed viability and germination, plant diseases, plant growth and cell texture, intracellular activity and cytoplasmic transport. We envision that further developments of these label-free approaches, will allow for high-resolution, dynamic imaging of plants and their organelles, ranging in scales from sub-cellular to tissue and from milliseconds to hours.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10239806 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1156478 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!