Climate change will lead to more frequent and severe drought periods which massively reduce crop production worldwide. Besides drought, nitrogen (N)-deficiency is another critical threat to crop yield production. Drought and N-deficiency both decrease photosynthesis and induce similar adaptive strategies such as longer roots, reduction of biomass, induction of reactive oxygen species (ROS), and antioxidative enzymes. Due to the overlapping response to N-deficiency and drought, understanding the physiological and molecular mechanisms involved in cross-stresses tolerance is crucial for breeding strategies and achieving multiple stress resistance and eventually more sustainable agriculture. The objective of this study was to investigate the effect of a mild N-deficiency on drought stress tolerance of tomato plants ( L., cv. Moneymaker). Various morphological and physiological parameters such as dry biomass, root length, water potential, SPAD values, stomatal conductance, and compatible solutes accumulation (proline and sugar) were analyzed. Moreover, the expression of ROS scavenging marker genes, cytosolic (, , ), were investigated. Our results showed that a former mild N-deficiency (2 mM NO ) enhances plant adaptive response to drought stress (4 days) when compared to the plants treated with adequate N (5 mM NO ). The improved adaptive response was reflected in higher aboveground biomass, longer root, increased specific leaf weight, enhanced stomatal conductance (without reducing water content), and higher leaf sugar content. Moreover, the gene showed a higher expression level compared to control under N-deficiency and in combination with drought in the leaf, after a one-week recovery period. Our finding highlights a potentially positive link between a former mild N-deficiency and subsequent drought stress response in tomato. Combining the morphological and physiological response with underlying gene regulatory networks under consecutive stress, provide a powerful tool for improving multiple stress resistance in tomato which can be further transferred to other economically important crops.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10168089 | PMC |
http://dx.doi.org/10.1002/pei3.10060 | DOI Listing |
Front Plant Sci
December 2024
Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
Drought conditions severely curtail the ability of plants to accumulate biomass due to the closure of stomata and the decrease of photosynthetic assimilation rate. Additionally, there is a shift in the plant's metabolic processes toward the production of metabolites that offer protection and aid in osmoadaptation, as opposed to those required for development and growth. To limit water loss via non-stomatal transpiration, plants adjust the load and composition of cuticle waxes, which act as an additional barrier.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, China.
The Jacalin-related lectins () gene family play a crucial role in regulating plant development and responding to environmental stress. However, a systematic bioinformatics analysis of the gene family in Gramineae plants has been lacking. In this study, we identified 101 JRL proteins from five Gramineae species and classified them into eight distinct clades.
View Article and Find Full Text PDFNew Phytol
January 2025
State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
The effects of drought stress on stomatal opening dynamics, plant volatile organic compound (VOC) emissions and plant-insect interactions have been well-documented individually, but how they interact mechanistically remains poorly studied. Here, we studied how drought-triggered stomatal closure affects VOC emission and plant-trophic interactions by combining RNAi silencing, molecular biological and chemical analyses (GC-MS) of a potato-tuber moth-egg parasitoid tritrophic system. Drought stress attenuated stomatal apertures and VOC emissions, which made the potato (Solanum tuberosum L.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia.
Water scarcity is a foremost environmental concern and is expected to hasten in the forthcoming years due to severe fluctuations in weather patterns worldwide. The present work was designed to explore the potential role of alpha-tocopherol (α-Toc), a form of vitamin E, on the morphological, physio-biochemical, and cellular antioxidant responses of two radish genotypes grown under drought conditions (38 ± 3% of field capacity). The individual and combined applications of α-Toc (100 ppm) were used as T0- Control, T1- Control + TF (TF-alpha-tocopherol), T2- Drought (D), and T3- D + TF with three replications.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
Background: Drought stress is a significant global challenge that negatively impacts cotton fiber yield and quality. Although many drought-stress responsive genes have been identified in cotton species (Gossypium spp.), the diversity of drought response mechanisms across cotton species remains largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!