Alzheimer disease is one of the most challenging demons in our society due to its very high prevalence and its clinical manifestations which cause deterioration of cognition, intelligence, and emotions - the very capacities that distinguish from other animal species. Besides the personal, social, and economical costs, late stages of AD are vivid experiences for the family, relatives, friends, and general observers of the progressive ruin of an individual who turns into a being with lower mental and physical capacities than less evolved species. A human brain with healthy cognition, conscience, and emotions can succeed in dealing with most difficulties that life may pose. Without these capacities, the same person probably cannot. Due, in part, to this emotional impact, the absorbing study of AD has generated, over the years, a fascinating and complex story of theories, hypotheses, controversies, fashion swings, and passionate clashes, together with tremendous efforts and achievements geared to improve understanding of the pathogenesis and treatment of the disorder. Familal AD is rare and linked to altered genetic information associated with three genes. Sporadic AD (sAD) is much more common and multifactorial. A major point of clinical discussion has been, and still is, establishing the differences between brain aging and sAD. This is not a trivial question, as the neuropathological and molecular characteristics of normal brain aging and the first appearance of early stages of sAD-related pathology are not easily distinguishable in most individuals. Another important point is confidence in assigning responsibility for the beginning of sAD to a few triggering molecules, without considering the wide number of alterations that converge in the pathogenesis of aging and sAD. Genetic risk factors covering multiple molecular signals are increasing in number. In the same line, molecular pathways are altered at early stages of sAD pathology, currently grouped under the aegis of normal brain aging, only to increase massively at advanced stages of the process. Sporadic AD is here considered an inherent, natural part of human brain aging, which is prevalent in all humans, and variably present or not in a few individuals in other species. The progression of the process has devastating effects in a relatively low percentage of human beings eventually evolving to dementia. The continuum of brain aging and sAD implies the search for a different approach in the study of human brain aging at the first stages of the biological process, and advances in the use of new technologies aimed at slowing down the molecular defects underlying human brain aging and sAD at the outset, and transfering information and tasks to AI and coordinated devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209894 | PMC |
http://dx.doi.org/10.17879/freeneuropathology-2022-3806 | DOI Listing |
Sci Rep
January 2025
Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland.
Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada.
People with amblyopia show deficits in global motion perception, especially at slow speeds. These observers are also known to have unstable fixation when viewing stationary fixation targets, relative to healthy controls. It is possible that poor fixation stability during motion viewing interferes with the fidelity of the input to motion-sensitive neurons in visual cortex.
View Article and Find Full Text PDFAm J Pathol
January 2025
Center for the Neural Basis of Cognition; Department of Pathology; Department of Bioengineering; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address:
The importance of complex systems has become increasingly evident in recent years. The nervous system is one such example with neural networks sitting at the intersection of complex networks and biology. A particularly exciting feature is the resilience of complex systems.
View Article and Find Full Text PDFNeuroimage
January 2025
Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark.
When engaged in dynamic or continuous movements, action initiation involves modifying an ongoing motor program rather than initiating it from rest. Event-related theta synchronization over sensorimotor areas is a neurophysiological marker for modifying motor programs. We used electroencephalography (EEG) to examine how task complexity and age affect event-related synchronization (ERS) in the theta band during a dynamic bimanual, visuomotor pinch force task.
View Article and Find Full Text PDFNeurosci Lett
January 2025
Department of Kinesiology and Applied Physiology, University of Delaware Newark DE USA. Electronic address:
Aging has a significant impact on brain structure, demonstrated by numerous MRI studies using diffusion tensor imaging (DTI). While these studies reveal changes in fractional anisotropy (FA) across different brain regions, they tend to focus on white matter tracts and cognitive regions, often overlooking gray matter and motor areas. Additionally, traditional DTI metrics can be affected by partial volume effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!