Introduction: Thoracic endovascular aortic repair (TEVAR) of the arch is challenging given its complex geometry and the involvement of supra-aortic arteries. Different branched endografts have been designed for use in this region, but their haemodynamic performance and the risk for post-intervention complications are not yet clear. This study aims to examine aortic haemodynamics and biomechanical conditions following TVAR treatment of an aortic arch aneurysm with a two-component single-branched endograft.
Methods: Computational fluid dynamics and finite element analysis were applied to a patient-specific case at different stages: pre-intervention, post-intervention and follow-up. Physiologically accurate boundary conditions were used based on available clinical information.
Results: Computational results obtained from the post-intervention model confirmed technical success of the procedure in restoring normal flow to the arch. Simulations of the follow-up model, where boundary conditions were modified to reflect change in supra-aortic vessel perfusion observed on the follow-up scan, predicted normal flow patterns but high levels of wall stress (up to 1.3M MPa) and increased displacement forces in regions at risk of compromising device stability. This might have contributed to the suspected endoleaks or device migration identified at the final follow up.
Discussion: Our study demonstrated that detailed haemodynamic and biomechanical analysis can help identify possible causes for post-TEVAR complications in a patient-specific setting. Further refinement and validation of the computational workflow will allow personalised assessment to aid in surgical planning and clinical decision making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10240084 | PMC |
http://dx.doi.org/10.3389/fcvm.2023.1125110 | DOI Listing |
Sci Rep
January 2025
School of Engineering, The University of Manchester, Manchester, UK.
This study examines how heart rate (HR) affects hemodynamics in a South African infant with Coarctation of the Aorta. Computed tomography angiography segments aortic coarctation anatomy; Doppler echocardiography derives inlet flow waveforms. Simulations occur at 100, 120, and 160 beats per minute, representing reduced, resting, and elevated HR levels.
View Article and Find Full Text PDFTransplant Proc
January 2025
Division of Kidney and Pancreas Transplantation, Vanderbilt University Medical Center, Nashville, Tennessee.
Background: Over the last decade, the number of simultaneous heart-kidney transplants (SHKTs) has increased dramatically. There are few reports of renal allograft outcomes in these high acuity patients. The goal of the present study was to identify variables that were related to early adverse outcomes (EAOs), including delayed graft function (DGF), primary non-function (PNF), and renal allograft futility (RAF) after SHKTs.
View Article and Find Full Text PDFThorac Cardiovasc Surg
January 2025
Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
Background: This study evaluated the midterm outcomes of rapid deployment aortic valve replacement (RDAVR) performed regardless of pathology for various aortic valve diseases at a single center.
Methods: Of the 344 patients who underwent RDAVR using Edwards INTUITY during the study period at our institution, 176 had bicuspid valve diseases (51.2%), 20 had pure aortic regurgitation (5.
J Thorac Cardiovasc Surg
January 2025
Institute for Health Transformation, Western Health, Melbourne, Australia.
Background: In adults the Ross procedure provides an excellent alternative to prosthetic valves, but it is underutilised because of concerns about technical complexity, durability, and perceived high late reoperation rates. The inclusion technique stabilizes the aortic root, prevents dilatation, and respects the dynamic root physiology. Long-term outcomes of the Ross procedure with the inclusion cylinder technique (1992-2022) are reported.
View Article and Find Full Text PDFMethodsX
June 2025
Texas A&M University Department of Biomedical Engineering, College Station, TX 77840, US.
Physical anatomical models constructed from medical images are valuable research tools for evaluating patient-specific clinical circumstances. For example, 3D models replicating a patient's internal anatomy in the cardiovascular system can be used to validate Computational Fluid Dynamics (CFD) models, which can then be used to identify potential hemodynamic consequences of surgical decisions by providing insight into how blood and vascular tissue mechanics may contribute to disease progression and post-operative complications. Patient-specific models have been described in the literature; however, rapid prototyping models that achieve anatomical accuracy, optical transparency, and thin-walled compliance in a cost and time-effective approach have proven challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!