A two-dimensional (2D) silicene-germanene alloy, siligene (SiGe), a single-phase material, has attracted increased attention due to its two-elemental low-buckled composition and unique physics and chemistry. This 2D material has the potential to address the challenges caused by low electrical conductivity and the environmental instability of corresponding monolayers. Yet, the siligene structure was studied in theory, demonstrating the material's great electrochemical potential for energy storage applications. The synthesis of free-standing siligene remains challenging and therefore hinders the research and its application. Herein we demonstrate nonaqueous electrochemical exfoliation of a few-layer siligene from a CaSiGe Zintl phase precursor. The procedure was conducted in an oxygen-free environment applying a -3.8 V potential. The obtained siligene exhibits a high quality, high uniformity, and excellent crystallinity; the individual flake is within the micrometer lateral size. The 2D SiGe was further explored as an anode material for lithium-ion storage. Two types of anode have been fabricated and integrated into lithium-ion battery cells, namely, (1) siligene-graphene oxide sponges and (2) siligene-multiwalled carbon nanotubes. The as-fabricated batteries both with/without siligene exhibit similar behavior; however there is an increase in the electrochemical characteristics of SiGe-integrated batteries by 10%. The corresponding batteries exhibit a 1145.0 mAh·g specific capacity at 0.1 A·g. The SiGe-integrated batteries demonstrate a very low polarization, confirmed by their good stability after 50 working cycles and a decrease in the solid electrolyte interphase level that occurs after the first discharge/charge cycle. We anticipate the growing potential of emerging two-component 2D materials and their great promise for energy storage and beyond.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311597PMC
http://dx.doi.org/10.1021/acsnano.3c00658DOI Listing

Publication Analysis

Top Keywords

siligene sige
8
lithium-ion storage
8
energy storage
8
sige-integrated batteries
8
siligene
7
electrochemical
4
electrochemical decalcification-exfoliation
4
decalcification-exfoliation two-dimensional
4
two-dimensional siligene
4
material
4

Similar Publications

A two-dimensional (2D) silicene-germanene alloy, siligene (SiGe), a single-phase material, has attracted increased attention due to its two-elemental low-buckled composition and unique physics and chemistry. This 2D material has the potential to address the challenges caused by low electrical conductivity and the environmental instability of corresponding monolayers. Yet, the siligene structure was studied in theory, demonstrating the material's great electrochemical potential for energy storage applications.

View Article and Find Full Text PDF

Two-dimensional silicon-based material siligene (SiGe) has a low diffusion barrier and high theoretical specific capacity, but the conductivity drops sharply after being fully lithiated. To improve their electrical conductivity, the three heterostructures (SV-G/S, DV-G/S, and SW-G/S) formed with defective graphene and SiGe were proposed and the feasibility of them as anode materials was analyzed systematically. Based on density functional theory, the structural properties of defective graphene/SiGe heterostructures (Def-G/S), the adsorption and diffusion behaviours of Li, the voltage and theoretical capacity, and electrical conductivity during the lithiation process were investigated.

View Article and Find Full Text PDF

p-n homojunctions are superior to p-n heterojunctions in constructing nanoscale functional devices, owing to the excellent crystallographic alignment. We tune the electronic properties of monolayer siligene (SiGe) into p/n-type the covalent functionalization of electrophilic/nucleophilic dopants, using quantum transport calculations. It is found that the n-type doping effect of K atoms is stronger than that of benzyl viologen (BV) molecule on the surface of SiGe monolayer, owing to the strong covalent interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!