The genome of Influenza A virus (IAV) transcribes and replicates in the nucleus of cells and the viral ribonucleoprotein (vRNP) complex plays an important role in viral replication. As a major component of the vRNP complex, the polymerase basic protein 2 (PB2) is translocated to the nucleus via its nuclear localization signals mediated by the importins. Herein, it was identified proliferating cell nuclear antigen (PCNA) as an inhibitor of nuclear import of PB2 and subsequent viral replication. Mechanically, PCNA interacted with PB2 and inhibited the nuclear import of PB2. Furthermore, PCNA decreased the binding efficiency of PB2 with importin alpha (importin α) and the K738, K752, and R755 of PB2 were identified as the key sites binding with PCNA and importin α. Furthermore, PCNA was demonstrated to retrain the vRNP assembly and polymerase activity. Taken together, the results demonstrated that PCNA impaired the nuclear import of PB2, vRNP assembly and polymerase activity, which negatively regulated virus replication.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmv.28849DOI Listing

Publication Analysis

Top Keywords

nuclear import
16
import pb2
12
proliferating cell
8
cell nuclear
8
nuclear antigen
8
influenza virus
8
pb2
8
virus replication
8
vrnp complex
8
viral replication
8

Similar Publications

HDAC1 and HDAC2 Are Involved in Influenza A Virus-Induced Nuclear Translocation of Ectopically Expressed STAT3-GFP.

Viruses

December 2024

Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.

Influenza A virus (IAV) remains a pandemic threat. Particularly, the evolution and increased interspecies and intercontinental transmission of avian IAV H5N1 subtype highlight the importance of continuously studying the IAV and identifying the determinants of its pathogenesis. Host innate antiviral response is the first line of defense against IAV infection, and the transcription factor, the signal transducer and activator of transcription 3 (STAT3), has emerged as a critical component of this response.

View Article and Find Full Text PDF

From the Cytoplasm into the Nucleus-Hepatitis B Virus Travel and Genome Repair.

Microorganisms

January 2025

Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41346 Gothenburg, Sweden.

Hepatitis B virus (HBV) is a major global health concern, affecting millions of people worldwide. HBV is part of the hepadnaviridae family and one of the primary causes of acute and chronic liver infections, leading to conditions such as cirrhosis and hepatocellular carcinoma (HCC). Understanding the intracellular transport and genome repair mechanisms of HBV is crucial for developing new drugs, which-in combination with immune modulators-may contribute to potential cures.

View Article and Find Full Text PDF

Unlabelled: Interlinked interactions between the viral capsid (CA), nucleoporins (Nups), and the antiviral protein myxovirus resistance 2 (MX2/MXB) influence human immunodeficiency virus 1 (HIV-1) nuclear entry and the outcome of infection. Although RANBP2/NUP358 has been repeatedly identified as a critical player in HIV-1 nuclear import and MX2 activity, the mechanism by which RANBP2 facilitates HIV-1 infection is not well understood. To explore the interactions between MX2, the viral CA, and RANBP2, we utilized CRISPR-Cas9 to generate cell lines expressing RANBP2 from its endogenous locus but lacking the C-terminal cyclophilin (Cyp) homology domain and found that both HIV-1 and HIV-2 infections were reduced significantly in RANBP2 cells.

View Article and Find Full Text PDF

Nuclear transport protein suppresses Tau neurodegeneration.

Adv Protein Chem Struct Biol

January 2025

Neural Development Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India.

The nuclear pore complex, a large multimeric structure consists of numerous protein components, serves as a crucial gatekeeper for the transport of macromolecules across the nuclear envelope in eukaryotic cells. Dysfunction of the NPC has been implicated in various neurodegenerative diseases, including Alzheimer's disease. In AD, Tau aggregates interact with NPC proteins, known as nucleoporins, leading to disruptions in nuclear transport.

View Article and Find Full Text PDF

Nuclear Tau accumulation in Alzheimer's disease.

Adv Protein Chem Struct Biol

January 2025

Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.

Tau is a well-known microtubule-associated protein and is located in the cytoplasm of neurons, which play a crucial role in Alzheimer's diseases. Due to its preferred binding to DNA sequences found in the nucleolus and pericentromeric heterochromatin, Tau has been found within the cell nucleus, where it may be a nucleic acid-associated protein. Tau has the ability to directly interact with nuclear pore complex nucleoporins, influencing both their structural and functional integrity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!