Various applications lead to the requirement of nanozymes with either specific activity or multiple enzyme-like activities. To this end, intelligent nanozymes with freely switching specificity abilities hold great promise to adapt to complicated and changeable practical conditions. Herein, a nitrogen-doped carbon-supported copper single-atom nanozyme (named Cu SA/NC) with switchable specificity is reported. Atomically dispersed active sites endow Cu SA/NC with specific peroxidase-like activity at room temperature. Furthermore, the intrinsic photothermal conversion ability of Cu SA/NC enables the specificity switch by additional laser irradiation, where photothermal-induced temperature elevation triggers the expression of oxidase-like and catalase-like activity of Cu SA/NC. For further applications in practice, a pretreatment-and-sensing integration kit (PSIK) is constructed, where Cu SA/NC can successively achieve sample pretreatment and sensitive detection by switching from multi-activity mode to specific-activity mode. This study sets the foundation for nanozymes with switchable specificity and broadens the application scope in point-of-care testing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202302929 | DOI Listing |
Adv Sci (Weinh)
January 2025
College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
Bacterial keratitis (BK) is a type of corneal inflammation resulting from bacterial infection in the eye. Although nanozymes have been explored as promising materials in corneal wound healing, currently available nanozymes lack sufficient catalytic activity and the ability to penetrate bacterial biofilms, limiting their efficacy against the treatment of BK. To remedy this, ZnFe layered double hydroxide (ZnFe-LDH) nanosheets are loaded with Cu single-atom nanozymes (Cu-SAzymes) and aminated dextran (Dex-NH), resulting in the formation of the nanozyme DT-ZnFe-LDH@Cu, which possesses peroxidase (POD)-, oxidase (OXD)-, and catalase (CAT)-like catalytic activities.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China. Electronic address:
Early diagnosis and treatment of gastric mucosal injury is crucial to prevent further gastritis and even canceration. As an efficient biocatalyst, single-atom nanozyme (SAzyme) is proposed to be an ideal candidate for the construction of multifunctional platforms. Nevertheless, SAzyme still faces challenges in detecting and treating diseases due to the complexity of preparation methods, limitations of enzyme activity, and undesirable biocompatibility.
View Article and Find Full Text PDFBiomater Sci
January 2025
Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
Wound healing is a complex and dynamic process often accompanied by bacterial infection, inflammation, and excessive oxidative stress. Single-atom nanozymes with multi-enzymatic activities show significant potential for promoting the healing of infected wounds by modulating their antibacterial and anti-inflammatory properties in response to the wound's physiological environment. In this study, we synthesized MN single-atom nanozymes with multi-enzymatic activities that intelligently respond to pH value changes in the wound healing process.
View Article and Find Full Text PDFSmall
January 2025
Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, 400060, China.
Nanozyme-based colorimetric sensors are promising approaches for environmental monitoring, food safety, and medical diagnostics. However, developing novel nanozymes that exhibit high catalytic activity, good dispersion in aqueous solution, high sensitivity, selectivity, and stability is challenging. In this study, for the first time, single-atom iridium-doped carbon dot nanozymes (SA Ir-CDs) are synthesized via a simple in situ pyrolysis process.
View Article and Find Full Text PDFBiomaterials
January 2025
Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China. Electronic address:
As a promising anti-tumor modality, photodynamic immunotherapy (PDIT) has been applied for the treatment of many solid tumors. However, tumor hypoxic condition and immunosuppressive microenvironment severely limit the treatment outcome of PDIT. Here, we have designed a hairpin tetrahedral DNA nanostructure (H-TDN)-modified bifunctional cascaded Pt single-atom nanozyme (PCFP@H-TDN) with encapsulation of the photosensitizer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!