A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Epigenetic Regulation of Hepatic Lipid Metabolism by DNA Methylation. | LitMetric

While extensive investigations have been devoted to the study of genetic pathways related to fatty liver diseases, much less is known about epigenetic mechanisms underlying these disorders. DNA methylation is an epigenetic link between environmental factors (e.g., diets) and complex diseases (e.g., non-alcoholic fatty liver disease). Here, it is aimed to study the role of DNA methylation in the regulation of hepatic lipid metabolism. A dynamic change in the DNA methylome in the liver of high-fat diet (HFD)-fed mice is discovered, including a marked increase in DNA methylation at the promoter of Beta-klotho (Klb), a co-receptor for the biological functions of fibroblast growth factor (FGF)15/19 and FGF21. DNA methyltransferases (DNMT) 1 and 3A mediate HFD-induced methylation at the Klb promoter. Notably, HFD enhances DNMT1 protein stability via a ubiquitination-mediated mechanism. Liver-specific deletion of Dnmt1 or 3a increases Klb expression and ameliorates HFD-induced hepatic steatosis. Single-nucleus RNA sequencing analysis reveals pathways involved in fatty acid oxidation in Dnmt1-deficient hepatocytes. Targeted demethylation at the Klb promoter increases Klb expression and fatty acid oxidation, resulting in decreased hepatic lipid accumulation. Up-regulation of methyltransferases by HFD may induce hypermethylation of the Klb promoter and subsequent down-regulation of Klb expression, resulting in the development of hepatic steatosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10369300PMC
http://dx.doi.org/10.1002/advs.202206068DOI Listing

Publication Analysis

Top Keywords

dna methylation
16
hepatic lipid
12
klb promoter
12
klb expression
12
regulation hepatic
8
lipid metabolism
8
fatty liver
8
increases klb
8
hepatic steatosis
8
fatty acid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!