Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In natural ecosystems, plants compete for space, nutrients and light. The optically dense canopies limit the penetration of photosynthetically active radiation and light often becomes a growth-limiting factor for the understory. The reduced availability of photons in the lower leaf layers is also a major constraint for yield potential in canopies of crop monocultures. Traditionally, crop breeding has selected traits related to plant architecture and nutrient assimilation rather than light use efficiency. Leaf optical density is primarily determined by tissue morphology and by the foliar concentration of photosynthetic pigments (chlorophylls and carotenoids). Most pigment molecules are bound to light-harvesting antenna proteins in the chloroplast thylakoid membranes, where they serve photon capture and excitation energy transfer toward reaction centers of photosystems. Engineering the abundance and composition of antenna proteins has been suggested as a strategy to improve light distribution within canopies and reduce the gap between theoretical and field productivity. Since the assembly of the photosynthetic antennas relies on several coordinated biological processes, many genetic targets are available for modulating cellular chlorophyll levels. In this review, we outline the rationale behind the advantages of developing pale green phenotypes and describe possible approaches toward engineering light-harvesting systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.19064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!