Synergistic Antibacterial Surface with Liquid Repellency and Enhanced Photothermal Bactericidal Activity.

Langmuir

School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China.

Published: June 2023

The presence of microorganisms on biomedical devices and food packaging surfaces poses an important threat to human health. Superhydrophobic surfaces, a powerful tool to combat pathogenic bacterial adhesion, are threatened by their poor robustness. As a supplement, photothermal bactericidal surfaces may be expected to kill adhered bacteria. Using copper mesh as a mask, we prepared a superhydrophobic surface with a homogeneous conical array. The surface shows synergistic antibacterial properties, including a superhydrophobic character against bacterial adhesion and photothermal bactericidal activity. As a result of the excellent liquid repellency, the surface could highly repel the adherence of bacteria after immersing in a bacterial suspension for 10 s (95%) and 1 h (57%). Photothermal graphene can easily eliminate most adhered bacteria during the subsequent treatment of near-infrared (NIR) radiation. After a self-cleaning wash, the deactivated bacteria were easily rinsed off the surface. Furthermore, this antibacterial surface exhibited an approximately 99.9% resisted bacterial adhesion rate regardless of planar and various uneven surfaces. The results offer promising advancement of an antibacterial surface combining both adhesion resistance and photothermal bactericidal activity in fighting microbial infections.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.2c03013DOI Listing

Publication Analysis

Top Keywords

photothermal bactericidal
16
antibacterial surface
12
bactericidal activity
12
bacterial adhesion
12
synergistic antibacterial
8
liquid repellency
8
adhered bacteria
8
surface
7
photothermal
5
surface liquid
4

Similar Publications

Managing wounds infected with multi-drug-resistant (MDR) bacteria remains a significant public health challenge in clinical settings. While multifunctional hydrogels are commonly employed to treat skin infections, there is a scarcity of hydrogels that effectively combine cationic guar gum (CG) with both potent antimicrobial and safe therapeutic actions. This study introduces a novel pH responsive, dual-dynamically crosslinked hydrogel (CFC-PDA/Ag), synthesized by crosslinking CG with polydopamine (PDA)-coated silver nanozymes (PDA/PM-AgNPs).

View Article and Find Full Text PDF

Non-antibiotic dependent photothermal antibacterial hemostatic MXene hydrogel for infectious wounds healing.

Biomater Adv

December 2024

National and Local Joint Engineering Laboratory for Synthetic Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:

On account of the existence of antibiotic resistance, the wound healing of pathogenic infection is still a challenge in modern society. A desirable wound dressing should own the abilities of adhesiveness, hemostasis and good mechanical property, meanwhile the property of eliminating bacteria without side effects is also highly needed. In this work, we established a kind of hydrogel based on carboxymethyl cellulose-graft-tyramine (CMC-Ty) and MXene (TiCT) through employing HO/HRP (horseradish peroxidase) as the initiator, then the as-prepared hydrogel (named CMC-Ty/MXene) was immersed in tannic acid (TA) solution, and this TA-treated hydrogel was called CMC-Ty/MXene+TA.

View Article and Find Full Text PDF

Infectious bacteria pose an increasing threat to public health, and hospital-acquired bacterial infections remain a significant challenge for wound healing. In this study, we developed an advanced nanoplatform utilizing copper doped magnetic vortex nanoring coated with polydopamine (Cu-MVNp) based nanotherapeutics for bacterial infection tri-therapy. This multifunctional nanoplatform exhibits remarkable dual-stimulus thermogenic capabilities and Fenton-like peroxidase activity.

View Article and Find Full Text PDF

Unlabelled: We present the chemical synthesis of polyethyleneimine-conjugated silver sulfide nanoparticles (PEI/AS) utilizing an economical solvothermal synthesis method, aimed at developing effective alternative antibacterial agents. The antibacterial efficacy of the synthesized materials, both with and without the application of near-infrared (NIR) laser irradiation, was evaluated in vitro against two distinct clinically relevant multi-drug-resistant (MDR) uropathogenic strains: and . The bactericidal effects induced by NIR light indicate that the PEI/AS nanoparticles possess an efficiency that is five times greater than that of AgS alone.

View Article and Find Full Text PDF

Electrophoretic deposition of Ag-Cu-CTS coatings on porous titanium with photothermal-responsive antibacterial effect.

J Colloid Interface Sci

December 2024

State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China. Electronic address:

Porous architecture of titanium implants offers significant advantages in promoting osseointegration and mitigating the "stress shielding" effect. However, challenges remain in enhancing vascularization and preventing infection, especially given the complexities of modifying the intricate surface structure of porous titanium (PT). This study introduces a novel surface modification technique of PT using anti-gravity perfusion electrophoretic deposition (EPD) technique to fabricate antibacterial coatings containing silver (Ag) and copper (Cu) co-doped mesoporous silica nanoparticles (Ag-Cu@MSN) and chitosan binder on the surface of PT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!