α-Synuclein oligomers and fibrils: partners in crime in synucleinopathies.

Neural Regen Res

Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy.

Published: November 2023

The misfolding and aggregation of α-synuclein is the general hallmark of a group of devastating neurodegenerative pathologies referred to as synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. In such conditions, a range of different misfolded aggregates, including oligomers, protofibrils, and fibrils, are present both in neurons and glial cells. Growing experimental evidence supports the proposition that soluble oligomeric assemblies, formed during the early phases of the aggregation process, are the major culprits of neuronal toxicity; at the same time, fibrillar conformers appear to be the most efficient at propagating among interconnected neurons, thus contributing to the spreading of α-synuclein pathology. Moreover, α-synuclein fibrils have been recently reported to release soluble and highly toxic oligomeric species, responsible for an immediate dysfunction in the recipient neurons. In this review, we discuss the current knowledge about the plethora of mechanisms of cellular dysfunction caused by α-synuclein oligomers and fibrils, both contributing to neurodegeneration in synucleinopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10360081PMC
http://dx.doi.org/10.4103/1673-5374.371345DOI Listing

Publication Analysis

Top Keywords

α-synuclein oligomers
8
oligomers fibrils
8
α-synuclein
5
fibrils
4
fibrils partners
4
partners crime
4
crime synucleinopathies
4
synucleinopathies misfolding
4
misfolding aggregation
4
aggregation α-synuclein
4

Similar Publications

Heat shock proteins (HSPs) are essential molecular chaperones that protect cells by aiding in protein folding and preventing aggregation under stress conditions. Small heat shock proteins (sHSPs), which include members from HSPB1 to HSPB10, are particularly important for cellular stress responses. These proteins share a conserved α-crystallin domain (ACD) critical for their chaperone function, with flexible N- and C-terminal extensions that facilitate oligomer formation.

View Article and Find Full Text PDF

Targeting Soluble Amyloid Oligomers in Alzheimer's Disease: A Hypothetical Model Study Comparing Intrathecal Pseudodelivery of mAbs Against Intravenous Administration.

Diseases

January 2025

Departamento de Medicina, Facultad de Ciencias de la Salud, Universidad de Oviedo, ES-33006 Oviedo, Spain.

Background/objective: Neurotoxic soluble amyloid-β (Aβ) oligomers are key drivers of Alzheimer's pathology, with evidence suggesting that early targeting of these soluble forms may slow disease progression. Traditional intravenous (IV) monoclonal antibodies (mAbs) face challenges, including limited brain penetration and risks such as amyloid-related imaging abnormalities (ARIA). This hypothetical study aimed to model amyloid dynamics in early-to-moderate Alzheimer's disease (AD) and compare the efficacy of IV mAn with intrathecal pseudodelivery, a novel method that confines mAbs in a subcutaneous reservoir for selective amyloid clearance in cerebrospinal fluid (CSF) without systemic exposure.

View Article and Find Full Text PDF

Effective fractionation of lignocellulose into hemicellulose, cellulose, and lignin is the precondition for full-component valorization. Generally, harsh reaction conditions are used to improve fractionation efficiency, which leads to severe lignin condensation and inhibits its value-added applications. To address this issue, a novel biphasic system consisting of molten salt hydrates (MSHs) and n-butanol was developed for birch fractionation.

View Article and Find Full Text PDF

Background: Adamantane derivatives, such as memantine (Mem) and amantadine (Ada), have distinct mechanisms and therapeutic applications. Ada is primarily utilized as an antiviral and anti-Parkinson drug without significant pro-cognitive effects, Mem is effective in various clinical conditions characterized by cognitive deficits, including Alzheimer's disease. Recent evidence highlights a neuroprotective role for Aβ monomers, suggesting that preventing their aggregation into toxic oligomers could be a promising therapeutic strategy.

View Article and Find Full Text PDF

G Protein-Coupled Receptor Heteromers in Brain: Functional and Therapeutic Importance in Neuropsychiatric Disorders.

Annu Rev Pharmacol Toxicol

January 2025

Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; email:

G protein-coupled receptors (GPCRs) represent the largest family of plasma membrane proteins targeted for therapeutic development. For decades, GPCRs were investigated as monomeric entities during analysis of their pharmacology or signaling and during drug development. However, a considerable body of evidence now indicates that GPCRs function as dimers or higher-order oligomers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!