Monolayer culture conditions suitable for primitive erythroid cell differentiation from embryonic stem cells in vitro.

Dev Growth Differ

Laboratory of Molecular Oncology, Tsukuba Life Science Center, The Institute of Physical and Chemical Research, 3-1-1, Koyadai, Tsukuba 305, Japan.

Published: April 1995

Embryonic stem (ES) cells effectively differentiated into primitive erythroid/mesodermal cells when grown in the absence of both a feeder layer and leukemia inhibitory factor (LIF). The formation of a three-dimensional structure, exogenous mesoderm induction factors and exogenous hematopoietic growth factors were not essential for their differentiation. Primitive erythroid cells were first detected on day 5 in the differentiation-permissive cultures. Differentiation into other mesodermal cells was always preceded by that into primitive erythroid cells. Precursor cells of erythroid cells but of other hematoid cells were also detected in this system. This model system is useful for studying the early steps of mesoderm formation in mouse embryogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1440-169X.1995.t01-1-00005.xDOI Listing

Publication Analysis

Top Keywords

primitive erythroid
12
erythroid cells
12
cells
9
embryonic stem
8
stem cells
8
cells detected
8
monolayer culture
4
culture conditions
4
conditions suitable
4
primitive
4

Similar Publications

Context.—: Blasts in myelodysplastic syndromes (MDSs) typically have a primitive myeloid immunophenotype (CD34+CD117+CD13+CD33+HLA-DR+). On rare occasions, blasts were found to be CD34 negative or minimally expressed in a presumptive MDS.

View Article and Find Full Text PDF

Background: Erythroid cells contribute to embryonic organ development and adult tissue repair supplying oxygen to tissues. During mouse development, the primitive erythroid cells produced in the extraembryonic blood islands of the yolk sac begin to circulate as immature and nucleated erythroblasts with the onset of cardiac contractions around embryonic day 9.5 (E9.

View Article and Find Full Text PDF

During mammalian development, production sites of the erythroid growth factor erythropoietin (EPO) shift from the neural tissues to the liver in embryos and to the kidneys in adults. Embryonic neural EPO-producing (NEP) cells, a subpopulation of neuroepithelial and neural crest cells, express the gene between embryonic day (E) 8.5 and E11.

View Article and Find Full Text PDF

Background: Deficiency of adenosine deaminase 2 (DADA2) is a complex monogenic disease caused by recessive mutations in the ADA2 gene. DADA2 exhibits a broad clinical spectrum encompassing vasculitis, immunodeficiency, and hematologic abnormalities. Yet, the impact of DADA2 on the bone marrow (BM) microenvironment is largely unexplored.

View Article and Find Full Text PDF

The contribution of endocardial cells (EdCs) to the hematopoietic lineages has been strongly debated. Here, we provide evidence that in zebrafish, the endocardium gives rise to and maintains a stable population of hematopoietic cells. Using single-cell sequencing, we identify an endocardial subpopulation expressing enriched levels of hematopoietic-promoting genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!