Invasion and migration of a single chick pre-streak stage epiblast cell in vitro: Its implication to the primitive streak formation.

Dev Growth Differ

Department of Biological Sciences, Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka, 259-12, Kanagawa, Japan.

Published: August 1995

To investigate the contribution of the epiblast cell behavior to the primitive streak formation, we examined the motility of a single epiblast cell from pre-streak stage embryo in vitro. On the substratum that was evenly coated with laminin gel, epiblast cells attached well to the gel and one or a few very long and broad cellular processes protruded from their spherical cell bodies; however, they hardly locomoted on it. Unexpectedly, after overnight culture, half of the single cells dissolved the laminin gel beneath them to make well-like holes, and invaded in the holes. On the substratum lined parallel with the fibrous laminin gels supplemented with fibronectin, they locomoted actively in accordance with the alignment. That is, they were subjected to contact guidance. In locomotion they looked like snails, extending one or a few long and broad processes in a forward direction from the spherical cell bodies. However, on the substratum lined with laminin or fibronectin only, they did not locomote actively. Individual chick pre-streak epiblast cells had already been committed to invade, and their migratory nature existed in each cell, even though they were isolated from the epithelial sheet. The implication of these findings on the cellular basis of primitive streak formation will be discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1440-169X.1995.t01-2-00011.xDOI Listing

Publication Analysis

Top Keywords

epiblast cell
12
primitive streak
12
streak formation
12
chick pre-streak
8
pre-streak stage
8
laminin gel
8
epiblast cells
8
long broad
8
spherical cell
8
cell bodies
8

Similar Publications

Generation of induced pluripotent stem cell line from a patient with long COVID.

Stem Cell Res

January 2025

Stanford Cardiovascular Institute, Stanford University School of Medicine, CA, USA; Baszucki Family Vascular Surgery Biobank, USA; Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, CA, USA. Electronic address:

Long COVID, or post-acute sequelae of SARS-CoV-2 infection, leads to vascular dysfunction, which contributes to the chronic multi-organ damage often seen in affected patients. Long COVID, a global health concern is associated with increased thrombotic risk, also known as COVID-19-associated coagulopathy (CAC). Here, we derived an induced pluripotent stem cell (iPSC) line from peripheral blood mononuclear cells (PBMCs) of a long COVID patient.

View Article and Find Full Text PDF

Despite significant advancements in sample preparation, instrumentation and data analysis, single-cell proteomics is currently limited by proteomic depth and quantitative performance. Here we demonstrate highly improved depth of proteome coverage as well as accuracy and precision for quantification of ultra-low input amounts. Using a tailored library, we identify up to 7,400 protein groups from as little as 250 pg of HeLa cell peptides at a throughput of 50 samples per day.

View Article and Find Full Text PDF

Tissue development relies on the coordinated differentiation of stem cells in dynamically changing environments. The formation of the vertebrate neural tube from stem cells in the caudal lateral epiblast (CLE) is a well characterized example. Despite an understanding of the signalling pathways involved, the gene regulatory mechanisms remain poorly defined.

View Article and Find Full Text PDF

In chick embryos prior to primitive streak formation, the outermost extraembryonic region, known as the area opaca (AO), was generally thought to act only by providing nutrients and mechanical support to the embryo. Just internal to the AO is a ring of epiblast called the marginal zone (MZ), separating the former from the inner, area pellucida epiblast. The MZ does not contribute cells to any part of the embryo but is involved in determining the position of primitive streak formation from the adjacent area pellucida epiblast.

View Article and Find Full Text PDF

Post-translational modifications of histone H3 on lysine 9, specifically acetylation (H3K9ac) and tri-methylation (H3K9me3), play a critical role in regulating chromatin accessibility. However, the role of these modifications in lineage segregation in the mammalian blastocyst remains poorly understood. We demonstrate that di- and tri-methylation marks, H3K9me2 and H3K9me3, decrease during cavitation and expansion of the rabbit blastocyst.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!