TOTAL CELL NUMBER AND NUMBER OF THE PRIMARY MESENCHYME CELLS IN WHOLE, 1/2 AND 1/4 LARVAE OF CLYPEASTER JAPONICUS.

Dev Growth Differ

Department of Biology, Tokyo Metropolitan University, Fukazawa 2-1-1, VSetagaya-ku. Tokyo 158, Japan.

Published: January 1979

Total cell number and number of the primary mesenchyme cells of 1/2 and 1/4 larvae were counted at several developmental stages after hatching in comparison with those of a whole larva, using Clypeaster japonicus as material. To obtain partial larvae, blastomeres were isolated at the 2- or 4-cell stage in Ca-free sea water and cultured in natural sea water at around 23°C. Isolated blastomeres cleaved as in situ, namely, as a part of an embryo. Although each partial embryo tended to spread into a plate, it acquired spherical shape prior to hatching of control whole embryo and developed normally in terms of both developmental rate and morphogenesis. Total cell number of a whole larva was about 620 just after hatching and increased almost linearly until i t reached 1850 at the pluteus stage. A half and quarter larvae contained roughly 1/2 and 1/4, respectively, of the number of cells of whole larva through all stages counted. Numbers of the primary mesenchyme cells in the partial larvae, however, tended to be slightly larger than a half or a fourth of that in whole larva. In whole larva, 35, 50, 56 and 58 was counted at the mesenchyme blastula, early gastrula, late gastrula and pluteus stage, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1440-169X.1979.00553.xDOI Listing

Publication Analysis

Top Keywords

total cell
12
cell number
12
primary mesenchyme
12
mesenchyme cells
12
1/2 1/4
12
number number
8
number primary
8
cells 1/2
8
1/4 larvae
8
clypeaster japonicus
8

Similar Publications

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

Background: Iron deficiency (ID) is the most common nutritional deficiency among patients undergoing major surgery. Treatment of ID is straightforward, however implementing a comprehensive anemia management strategy within clinical routines is complex. Recently, reticulocyte hemoglobin content (Ret-He) has been evaluated as an early marker for ID diagnosis.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

This study investigated the correlation between quantitative echocardiographic characteristics within 3 days of birth and necrotizing enterocolitis (NEC) and its severity in preterm infants. A retrospective study was conducted on 168 preterm infants with a gestational age of < 34 weeks. Patients were categorized into NEC and non-NEC groups.

View Article and Find Full Text PDF

Black carp (Mylopharyngodon piceus) is one of the "four famous domestic fishes" in China and an important economic fish in freshwater aquaculture. A high-quality genome is essential for advancing future biological research and breeding programs for this species. In this study, we aimed to generate a high-quality chromosome-level genome assembly of black carp using Nanopore and Hi-C technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!